The Regulation of Laser-Arc Hybrid Welding Source on TC4 Ti Alloy to 304 Stainless Steel Joints with Interlayers

  • Hongyang WangEmail author
  • Gang Song
  • Zhonglin Hou
  • Liming Liu
Conference paper
Part of the Transactions on Intelligent Welding Manufacturing book series (TRINWM)


Laser-arc hybrid welding source is used to join TC4 Ti alloy to 304 stainless steel with Cu interlayer and adhesive. The influences of the welding source and the interlayers on the microstructures and intermetallic in the welding joint are analyzed elaborately. The welding joint shows a layer structure with the effect of laser-arc hybrid welding source. The Ti–Fe intermetallic (IMC) is nearly eliminated by the Cu interlayer, which reduces harmful effect of IMC obviously. More Ti–Cu intermetallic is found in the transition zone, which influences the property of the laser-arc welding TC4 Ti alloy to 304 stainless steel joints. The surface state and heat transfer process in the welding joint are changed. The property of the dissimilar joint is improved by the laser-arc hybrid welding source and the addition of interlayers.


Laser-arc hybrid welding Adhesive Heat transform Ti Stainless steel Intermetallics 



The authors gratefully acknowledge the support of the National Natural Science Foundation of China (U1764251), the Science Fund for Creative Research Groups of NSFC (51621064).


  1. 1.
    Nakaia M, Niinomia M, Akahorib T et al (2012) Microstructural factors determining mechanical properties of laser-welded Ti-4.5 Al-2.5 Cr-1.2 Fe-0.1 C alloy for use in next-generation aircraft. Mater Sci Eng A 550:55–65CrossRefGoogle Scholar
  2. 2.
    Gangwar K, Mamidal R, Sanders GD (2017) Friction stir welding of near α and α + β titanium alloys: metallurgical and mechanical characterization. Metals 7(12):565CrossRefGoogle Scholar
  3. 3.
    Reitemeyer D, Schult V, Syassen F et al (2013) Laser welding of large scale stainless steel aircraft structures. Phys Procedia 41:106–111CrossRefGoogle Scholar
  4. 4.
    Başyiğit AB, Kurt A (2017) Investigation of the weld properties of dissimilar S32205 duplex stainless steel with AISI 304 steel joints produced by arc stud welding. Metals 7(3):77CrossRefGoogle Scholar
  5. 5.
    Chen S, Zhang M, Huang J et al (2014) Microstructures and mechanical property of laser butt welding of titanium alloy to stainless steel. Mater Des 53:504–511CrossRefGoogle Scholar
  6. 6.
    Shanmugarajan B, Padmanabham G (2012) Fusion welding studies using laser on Ti–SS dissimilar combination. Opt Laser Eng 50:1612CrossRefGoogle Scholar
  7. 7.
    Ishida K, Gao Y, Nagatsuka K et al (2015) Microstructures and mechanical properties of friction stir welded lap joints of commercially pure titanium and 304 stainless steel. J Alloy Compd 630:172–177CrossRefGoogle Scholar
  8. 8.
    Wang T, Zhang B, Feng J et al (2012) Effect of a copper filler metal on the microstructure and mechanical properties of electron beam welded titanium–stainless steel joint. Mater Charact 73:104–113CrossRefGoogle Scholar
  9. 9.
    Wang T, Zhang B, Chen G et al (2013) High strength electron beam welded titanium-stainless steel joint with V/Cu based composite filler metals. Vacuum 94:41–47CrossRefGoogle Scholar
  10. 10.
    Tomashchuk I, Sallamand P, Andrzejewski H et al (2011) The formation of intermetallics in dissimilar Ti6Al4V/copper/AISI 316 L electron beam and Nd: YAG laser joints. Intermetallics 19(10):1466–1473CrossRefGoogle Scholar
  11. 11.
    Kundu S, Roy D, Chatterjee S et al (2012) Influence of interface microstructure on the mechanical properties of titanium/17-4 PH stainless steel solid state diffusion bonded joints. Mater Des 37:560–568CrossRefGoogle Scholar
  12. 12.
    Sam S, Kundu S, Chatterjee S (2012) Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: interface microstructure and strength properties. Mater Des 40:237–244CrossRefGoogle Scholar
  13. 13.
    Kundu S, Sam S, Chatterjee S (2011) Evaluation of interface microstructure and mechanical properties of the diffusion bonded joints of Ti–6Al–4V alloy to micro-duplex stainless steel. Mater Sci Eng A 528(15):4910–4916CrossRefGoogle Scholar
  14. 14.
    Lee MK, Lee JG, Choi YH et al (2010) Interlayer engineering for dissimilar bonding of titanium to stainless steel. Mater Lett 64(9):1105–1108CrossRefGoogle Scholar
  15. 15.
    Wang HY, Liu LM (2014) Analysis of the influence of adhesives in laser weld bonded joints. Int J Adhes Adhes 52:77–81CrossRefGoogle Scholar
  16. 16.
    Wang HY, Liu LM, Liu F (2013) The characterization investigation of laser-arc-adhesive hybrid welding of Mg to Al joint using Ni interlayer. Mater Des 50:463–466CrossRefGoogle Scholar
  17. 17.
    Wang HY, Song G (2017) Influence of adhesive and Ni on the interface between Mg and Fe in the laser-TIG-adhesive hybrid welding joint. Int J Precis Eng Manuf 17(6):823–827CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Hongyang Wang
    • 1
    Email author
  • Gang Song
    • 1
  • Zhonglin Hou
    • 1
    • 2
  • Liming Liu
    • 1
  1. 1.School of Material Science and Engineering, Key Laboratory of Liaoning Advanced Welding and Joining TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Material Science and EngineeringUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations