Skip to main content

Opportunities and Challenges in Targeted Carrier-Based Intracellular Drug Delivery: Increased Efficacy and Reduced Toxicity

  • Chapter
Novel Drug Delivery Technologies

Abstract

The discovery of new therapeutic agents and targets depending upon the pathophysiology of various diseases has necessitated the delivery of therapeutic molecules to specific cellular sub-compartments. The efficiency of various treatments can be improved by carefully designing new therapeutic strategies involving modifications of nanocarriers enabling organelle-specific targeting of bioactives. In order to do that, in-depth studies to unravel the pathophysiology of diseases, internalization and intracellular trafficking pathways, as well as the time-dependent fate and release of encapsulated cargo from nanocarriers within the organelles are much needed. Despite the interdisciplinary efforts from the fields of medicine, materials science, and engineering, and the development of various nanomedicines with a precise control over their physical and chemical attributes, the subcellular targeted delivery still presents formidable challenges. Further, considering the fact that drug repurposing is now gaining interest, an intersection of nanocarriers and drug repurposing would provide key benefits like reduced time, cost, and risk in developing safer and more effective treatments for several indications. The significant opportunities and challenges in further progress toward bench-to-bedside translation of organelle-targeted nanomedicines are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480

    Article  CAS  PubMed  Google Scholar 

  2. Torchilin VP (2000) Drug targeting. Front Biopharm 11:S81–S91

    CAS  Google Scholar 

  3. Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Spec Issue Struct Biol 86(3):215–223

    CAS  Google Scholar 

  4. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release Off J Control Release Soc 153(3):198–205

    Article  CAS  Google Scholar 

  5. Kleinstreuer C, Feng Y, Childress E (2014) Drug-targeting methodologies with applications: a review. World J Clin Cases 2(12):742–756

    Article  PubMed  PubMed Central  Google Scholar 

  6. Syjk N (2014) Novel drug delivery systems and regulatory affairs. S Chand & Company Limited

    Google Scholar 

  7. Himri I, Guaadaoui A (2018) Chapter 1 – cell and organ drug targeting: types of drug delivery systems and advanced targeting strategies. In: Grumezescu AM (ed) Nanostructures for the engineering of cells, tissues and organs. William Andrew Publishing, Oxford, pp 1–66

    Google Scholar 

  8. Prokop A, Davidson JM (2008) Nanovehicular intracellular delivery systems. J Pharm Sci 97(9):3518–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 17(7):585–599

    Google Scholar 

  10. Li YY, Jones SJ (2012) Drug repositioning for personalized medicine. Genome Med 4(3):27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Padhy B, Gupta Y (2011) Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med 57(2):153–160

    Article  CAS  PubMed  Google Scholar 

  12. Triscott J, Rose Pambid M, Dunn SE (2015) Concise review: bullseye: targeting cancer stem cells to improve the treatment of Gliomas by repurposing disulfiram. Stem Cells 33(4):1042–1046

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Tan J, McConville C, Kannappan V, Tawari PE, Brown J et al (2017) Poly lactic-co-glycolic acid controlled delivery of disulfiram to target liver cancer stem-like cells. Nanomed Nanotechnol Biol Med 13(2):641–657

    Article  CAS  Google Scholar 

  14. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, Wells A et al (2018) Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18:41–58

    Article  PubMed  CAS  Google Scholar 

  15. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. P T Peer-Rev J Formul Manag 42(12):742–755

    Google Scholar 

  16. V Torchilin, R Rammohan, T Levchenko, N Volodina (2005) – Intracellular delivery of therapeutic agents. US Patent App. 10/503,776

    Google Scholar 

  17. Benenato K, Kumarasinghe E, Cornebise M (2017) Compounds and compositions for intracellular delivery of therapeutic agents. US patent US20170210697 A1

    Google Scholar 

  18. Zalipsky S, Allen T, Huang S (2002) Liposome composition for improved intracellular delivery of a therapeutic agent. US Patent US20020192275A1

    Google Scholar 

  19. Galindo SM, Muzykantov VR, Schuchman EH (2006) Targeted protein replacement for the treatment of lysosomal storage disorders. WO2006007560

    Google Scholar 

  20. Dattagupta N, Das AR, Sridhar CN, Patel JR (1998) Method for the intracellular delivery of biomolecules using liposomes containing cationic lipids and vitamin D. US Patent US5711964A

    Google Scholar 

  21. Felgner PL, Kumar R, Basava C, Border RC, Hwang-Felgner J-Y (1995) Cationic lipids for intracellular delivery of biologically active molecules. US Patent US5459127A

    Google Scholar 

  22. Berry D, Anderson D, Lynn D, Sasisekharan R, Langer R (2006) Methods and products related to the intracellular delivery of polysaccharides. US Patent US20060083711A1

    Google Scholar 

  23. Gieseler R, Marquitan G, Scolaro M, Schwarz A (2007) Carbohydrate-derivatized liposomes for targeting cellular carbohydrate recognition domains of Ctl/Ctld lectins, and intracellular delivery of therapeutically active compounds. US Patent US20070292494A1

    Google Scholar 

  24. Lakkaraju A, Dubinsky J, Low W, Rahman Y-E (2003) Anionic liposomes for delivery of bioactive agents. US Patent US20030026831A1

    Google Scholar 

  25. Akita H, Fujiwara T, Harashima H (2009) Liposome for targeting golgi apparatus. Japanese Patent JP2009286709A

    Google Scholar 

  26. Fahmy TM, Fong PM, Goyal A, Saltzman WM (2005) Targeted for drug delivery. Mater Today 8(8, Supplement):18–26

    Article  Google Scholar 

  27. Schinkel AH, Jonker JW (2003) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Drug Efflux Transp Implic Drug Deliv Dispos Response 55(1):3–29

    CAS  Google Scholar 

  28. Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J (2002) By-passing of P-glycoprotein using immunoliposomes. J Drug Target 10(1):73–79

    Article  CAS  PubMed  Google Scholar 

  29. Nowak AK, Robinson BWS, Lake RA (2003) Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors. Cancer Res 63(15):4490–4496

    CAS  PubMed  Google Scholar 

  30. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M et al (1999) Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18:2241–2251

    Article  CAS  PubMed  Google Scholar 

  31. Czuczman MS, Grillo-López AJ, White CA, Saleh M, Gordon L, LoBuglio AF et al (1999) Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and chop chemotherapy. J Clin Oncol 17(1):268–276

    Article  CAS  PubMed  Google Scholar 

  32. Edens HA, Levi BP, Jaye DL, Walsh S, Reaves TA, Turner JR et al (2002) Neutrophil transepithelial migration: evidence for sequential, contact-dependent signaling events and enhanced paracellular permeability independent of transjunctional migration. J Immunol 169(1):476–486

    Article  CAS  PubMed  Google Scholar 

  33. Schiffelers RM, Storm G, Bakker-Woudenberg IAJM (2001) Host factors influencing the preferential localization of sterically stabilized liposomes in klebsiella pneumoniae-infected rat lung tissue. Pharm Res 18(6):780–787

    Article  CAS  PubMed  Google Scholar 

  34. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  35. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1):271–284

    Article  CAS  PubMed  Google Scholar 

  36. Toyokazu U, Hiroaki S, Kohtaro A, Yasuharu M, Tsuyoshi H, Keiji O et al (2003) Application of nanoparticle technology for the prevention of restenosis after balloon injury in rats. Circ Res 92(7):e62–e69

    Google Scholar 

  37. Guzman Luis A, Vinod L, Cunxian S, Yangsoo J, Michael LA, Robert L et al (1996) Local intraluminal infusion of biodegradable polymeric nanoparticles. Circulation 94(6):1441–1448

    Article  Google Scholar 

  38. Pardridge WM (1999) Vector-mediated drug delivery to the brain. Blood-Brain Barrier Dyn Interface Drug Deliv Brain 36(2):299–321

    CAS  Google Scholar 

  39. Abbott NJ, Romero IA (1996) Transporting therapeutics across the blood-brain barrier. Mol Med Today 2(3):106–113

    Article  CAS  PubMed  Google Scholar 

  40. Egleton RD, Davis TP (1997) Bioavailability and transport of peptides and peptide drugs into the brain. Peptides 18(9):1431–1439

    Article  CAS  PubMed  Google Scholar 

  41. Francis J, Bastia E, Matthews C, Parks D, Schwarzschild M, Brown R et al (2004) Tetanus toxin fragment C as a vector to enhance delivery of proteins to the CNS. Brain Res 1011(1):7–13

    Article  CAS  PubMed  Google Scholar 

  42. Jain SA, Chauk DS, Mahajan HS, Tekade AR, Gattani SG (2009) Formulation and evaluation of nasal mucoadhesive microspheres of Sumatriptan succinate. J Microencapsul 26(8):711–721

    Article  CAS  PubMed  Google Scholar 

  43. Stolnik S, Illum L, Davis SS (1995) Long circulating microparticulate drug carriers. Long-Circ Drug Deliv Syst 16(2):195–214

    CAS  Google Scholar 

  44. Juliano RL (1988) Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Mononucl Phagocyte Syst 2(1):31–54

    CAS  Google Scholar 

  45. Rodrigues JM, Fessi H, Bories C, Puisieux F, Devissaguet J-P (1995) Primaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. Int J Pharm 126(1):253–260

    Article  CAS  Google Scholar 

  46. Ding L, Samuel J, MacLean GD, Noujaim AA, Diener E, Longenecker BM (1990) Effective drug-antibody targeting using a novel monoclonal antibody against the proliferative compartment of mammalian squamous carcinomas. Cancer Immunol Immunother 32(2):105–109

    Article  CAS  PubMed  Google Scholar 

  47. Duan X, Li Y (2013) Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10):1521–1532

    Article  CAS  PubMed  Google Scholar 

  48. Champion JA, Walker A, Mitragotri S (2008) Role of particle size in phagocytosis of polymeric microspheres. Pharm Res 25(8):1815–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105(33):11613–11618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717

    Article  CAS  PubMed  Google Scholar 

  51. Venturoli D, Rippe B (2005) Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. Am J Physiol-Ren Physiol 288(4):F605–F613

    Article  CAS  Google Scholar 

  52. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146

    Article  CAS  PubMed  Google Scholar 

  53. Jiang W, Kim BYS, Rutka JT, Chan WCW (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3(3):145–150

    Article  CAS  PubMed  Google Scholar 

  54. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26(10):552–558

    Article  CAS  PubMed  Google Scholar 

  55. Chen J, Clay N, Kong H (2015) Non-spherical particles for targeted drug delivery. Chem Eng Sci 125:20–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Truong NP, Whittaker MR, Mak CW, Davis TP (2015) The importance of nanoparticle shape in cancer drug delivery. Expert Opin Drug Deliv 12(1):129–142

    Article  CAS  PubMed  Google Scholar 

  57. Devarajan PV (2014) Targeted drug delivery: concepts and design. Springer, New York

    Google Scholar 

  58. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S et al (2010) Polymer particle shape independently influences binding and internalization by macrophages. J Control Release Off J Control Release Soc 147(3):408–412

    Article  CAS  Google Scholar 

  59. Yoo J-W, Doshi N, Mitragotri S (2010) Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol Rapid Commun 31(2):142–148

    CAS  PubMed  Google Scholar 

  60. Ahsan F (2002) Targeting to macrophages: role of physicochemical properties of particulate carriers—liposomes and microspheres—on the phagocytosis by macrophages. J Control Release 79(1–3):29–40

    Article  CAS  PubMed  Google Scholar 

  61. Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4(2):145–160

    Article  CAS  PubMed  Google Scholar 

  62. Ducat E, Deprez J, Gillet A, Noël A, Evrard B, Peulen O et al (2011) Nuclear delivery of a therapeutic peptide by long circulating pH-sensitive liposomes: benefits over classical vesicles. Int J Pharm 420(2):319–332

    Article  CAS  PubMed  Google Scholar 

  63. Jafarzadeh-Holagh S, Hashemi-Najafabadi S, Shaki H, Vasheghani-Farahani E (2018) Self-assembled and pH-sensitive mixed micelles as an intracellular doxorubicin delivery system. J Colloid Interface Sci 523:179–190

    Article  CAS  PubMed  Google Scholar 

  64. Lukyanov AN, Hartner WC, Torchilin VP (2004) Increased accumulation of PEG-PE micelles in the area of experimental myocardial infarction in rabbits. J Control Release Off J Control Release Soc 94(1):187–193

    Article  CAS  Google Scholar 

  65. Wang J, Mongayt D, Torchilin VP (2005) Polymeric micelles for delivery of poorly soluble drugs: preparation and anticancer activity in vitro of paclitaxel incorporated into mixed micelles based on poly(ethylene glycol)-lipid conjugate and positively charged lipids. J Drug Target 13(1):73–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Roser M, Fischer D, Kissel T (1998) Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV 46(3):255–263

    Article  CAS  Google Scholar 

  67. Blau S, Jubeh TT, Haupt SM, Rubinstein A (2000) Drug targeting by surface cationization. Crit Rev Ther Drug Carrier Syst 17(5):425–465

    Article  CAS  PubMed  Google Scholar 

  68. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  PubMed  PubMed Central  Google Scholar 

  69. Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM et al (2011) The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials 32(13):3435–3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jain NK, Nahar M (2010) PEGylated nanocarriers for systemic delivery. Methods Mol Biol Clifton NJ 624:221–234

    Article  CAS  Google Scholar 

  71. Mishra P, Nayak B, Dey RK (2016) PEGylation in anti-cancer therapy: an overview. Asian J Pharm Sci 11(3):337–348

    Article  Google Scholar 

  72. Pouton C, Wagstaff K, Roth D, Moseley G, Jans D (2007) Targeted delivery to the nucleus. Adv Drug Deliv Rev 59(8):698–717

    Article  CAS  PubMed  Google Scholar 

  73. Barratt G (2011) Delivery to intracellular targets by nanosized particles. In: Intracellular delivery: fundamentals and applications, Fundamental biomedical technologies. Springer, Dordrecht/New York, pp 73–96

    Chapter  Google Scholar 

  74. Sharma A, Vaghasiya K, Ray E, Verma RK (2018) Lysosomal targeting strategies for design and delivery of bioactive for therapeutic interventions. J Drug Target 26(3):208–221

    Article  CAS  PubMed  Google Scholar 

  75. Agrawal U, Sharma R, Vyas S (2014) Chp 7 targeted drug delivery to the mitochondria. In: Targeted drug delivery: concepts and design. Springer, New York, pp 241–270

    Google Scholar 

  76. Smith RAJ, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11(57):106–114

    PubMed  Google Scholar 

  77. Zhang C, Sriratana A, Minamikawa T, Nagley P (1998) Photosensitisation properties of mitochondrially localised green fluorescent protein. Biochem Biophys Res Commun 242(2):390–395

    Article  CAS  PubMed  Google Scholar 

  78. Pollard H, Remy J-S, Loussouarn G, Demolombe S, Behr J-P, Escande D (1998) Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells. J Biol Chem 273(13):7507–7511

    Article  CAS  PubMed  Google Scholar 

  79. International Human Genome Sequencing Consortium, Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  80. Mouse Genome Sequencing Consortium, Chinwalla AT, Cook LL, Delehaunty KD, Fewell GA, Fulton LA et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  CAS  Google Scholar 

  81. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  82. Peters MF, Nucifora FC, Kushi J, Seaman HC, Cooper JK, Herring WJ et al (1999) Nuclear targeting of mutant huntingtin increases toxicity. Mol Cell Neurosci 14(2):121–128

    Article  CAS  PubMed  Google Scholar 

  83. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Organelle-Specif Target Drug Deliv Des 59(8):748–758

    CAS  Google Scholar 

  84. Yasuhara N, Takeda E, Inoue H, Kotera I, Yoneda Y (2004) Importin α/β-mediated nuclear protein import is regulated in a cell cycle-dependent manner. Exp Cell Res 297(1):285–293

    Article  CAS  PubMed  Google Scholar 

  85. Strunze S, Trotman LC, Boucke K, Greber UF (2005) Nuclear targeting of adenovirus type 2 requires CRM1-mediated nuclear export. Mol Biol Cell 16(6):2999–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tammam SN, Azzazy HM, Breitinger HG, Lamprecht A (2015) Chitosan nanoparticles for nuclear targeting: the effect of nanoparticle size and nuclear localization sequence density. Mol Pharm 12(12):4277–4289

    Article  CAS  PubMed  Google Scholar 

  87. Sun Y, Xian L, Xing H, Yu J, Yang Z, Yang T et al (2016) Factors influencing the nuclear targeting ability of nuclear localization signals. J Drug Target 24(10):927–933

    Article  CAS  PubMed  Google Scholar 

  88. Chan C-K, Jans DA (2002) Using nuclear targeting signals to enhance non-viral gene transfer. Immunol Cell Biol 80(2):119–130

    Article  CAS  PubMed  Google Scholar 

  89. Smyth TN (2002) Cationic liposome-mediated gene delivery in vivo. Biosci Rep 22(2):283–295

    Article  Google Scholar 

  90. Patel LN, Zaro JL, Shen W-C (2007) Cell penetrating peptides: intracellular pathways and pharmaceutical perspectives. Pharm Res 24(11):1977–1992

    Article  CAS  PubMed  Google Scholar 

  91. Li S, Huang L (2000) Nonviral gene therapy: promises and challenges. Gene Ther 7:31–34

    Article  CAS  PubMed  Google Scholar 

  92. Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X et al (1993) Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 90(23):11307–11311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Park YJ, Liang JF, Ko KS, Kim SW, Yang VC (2003) Low molecular weight protamine as an efficient and nontoxic gene carrier: in vitro study. J Gene Med 5(8):700–711

    Article  CAS  PubMed  Google Scholar 

  94. Ye S, Tian M, Wang T, Ren L, Wang D, Shen L et al (2012) Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. Nanomed Nanotechnol Biol Med 8(6):833–841

    Article  CAS  Google Scholar 

  95. Jeon O, Lim H-W, Lee M, Song SJ, Kim B-S (2007) Poly(l-lactide-co-glycolide) nanospheres conjugated with a nuclear localization signal for delivery of plasmid DNA. J Drug Target 15(3):190–198

    Article  CAS  PubMed  Google Scholar 

  96. Huo S, Jin S, Ma X, Xue X, Yang K, Kumar A et al (2014) Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 8(6):5852–5862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grandinetti G, Smith AE, Reineke TM (2012) Membrane and nuclear permeabilization by polymeric pDNA vehicles: efficient method for gene delivery or mechanism of cytotoxicity? Mol Pharm 9(3):523–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Austin LA, Kang B, Yen C-W, El-Sayed MA (2011) Nuclear targeted silver nanospheres perturb the cancer cell cycle differently than those of nanogold. Bioconjug Chem 22(11):2324–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fan W, Shen B, Bu W, Zheng X, He Q, Cui Z et al (2015) Design of an intelligent sub-50 nm nuclear-targeting nanotheranostic system for imaging guided intranuclear radiosensitization. Chem Sci 6(3):1747–1753

    Article  CAS  PubMed  Google Scholar 

  100. Kim J, Dang CV (2006) Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res 66(18):8927–8930

    Article  CAS  PubMed  Google Scholar 

  101. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  102. Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. JNCI J Natl Cancer Inst 92(13):1042–1053

    Article  CAS  PubMed  Google Scholar 

  103. Duchen MR (2004) Roles of mitochondria in health and disease. Diabetes 53(suppl 1):S96–S102

    Article  CAS  PubMed  Google Scholar 

  104. Murphy MP, Smith RA (2000) Drug delivery to mitochondria: the key to mitochondrial medicine. Recent Adv Cell Subcell Mol Target 41(2):235–250

    CAS  Google Scholar 

  105. Ross MF, Kelso GF, Blaikie FH, James AM, Cochemé HM, Filipovska A et al (2005) Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochem Mosc 70(2):222–230

    Article  CAS  Google Scholar 

  106. Muratovska A, Lightowlers RN, Taylor RW, Turnbull DM, Smith RA, Wilce JA et al (2001) Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 29(9):1852–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tanaka M, Borgeld H-J, Zhang J, Muramatsu S, Gong J-S, Yoneda M et al (2002) Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J Biomed Sci 9(6):534–541

    CAS  PubMed  Google Scholar 

  108. Weissig V, D’Souza GG, Torchilin V (2001) DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release 75(3):401–408

    Article  CAS  PubMed  Google Scholar 

  109. Chen Z-P, Li M, Zhang L-J, He J-Y, Wu L, Xiao Y-Y et al (2016) Mitochondria-targeted drug delivery system for cancer treatment. J Drug Target 24(6):492–502

    Article  CAS  PubMed  Google Scholar 

  110. Kang HC (2004) Roles of Mitochondria in Health and Disease. Diabetes 53(suppl 1):S96

    Google Scholar 

  111. D’Souza GGM, Boddapati SV, Weissig V (2005) Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5(5):352–358

    Article  PubMed  CAS  Google Scholar 

  112. D’Souza GG, Cheng S-M, Boddapati SV, Horobin RW, Weissig V (2008) Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 16(7–8):578–585

    Article  PubMed  CAS  Google Scholar 

  113. Boddapati SV, Tongcharoensirikul P, Hanson RN, D’Souza GGM, Torchilin VP, Weissig V (2005) Mitochondriotropic Liposomes. J Liposome Res 15(1–2):49–58

    Article  CAS  PubMed  Google Scholar 

  114. Yamada Y, Akita H, Kamiya H, Kogure K, Yamamoto T, Shinohara Y et al (2008) MITO-porter: a liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim Biophys Acta Biomembr 1778(2):423–432

    Article  CAS  Google Scholar 

  115. Yasuzaki Y, Yamada Y, Harashima H (2010) Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem Biophys Res Commun 397(2):181–186

    Article  CAS  PubMed  Google Scholar 

  116. Callahan J, Kopecek J (2006) Semitelechelic HPMA copolymers functionalized with triphenylphosphonium as drug carriers for membrane transduction and mitochondrial localization. Biomacromolecules 7(8):2347–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhou L, Liu J-H, Ma F, Wei S-H, Feng Y-Y, Zhou J-H et al (2010) Mitochondria-targeting photosensitizer-encapsulated amorphous nanocage as a bimodal reagent for drug delivery and biodiagnose in vitro. Biomed Microdevices 12(4):655–663

    Article  CAS  PubMed  Google Scholar 

  118. Lübke T, Lobel P, Sleat DE (2009) Proteomics of the lysosome. Lysosomes 1793(4):625–635

    Google Scholar 

  119. Bagshaw RD, Mahuran DJ, Callahan JW (2005) A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol Amp Cell Proteomics 4(2):133–143

    Article  CAS  Google Scholar 

  120. Parkinson-Lawrence EJ, Shandala T, Prodoehl M, Plew R, Borlace GN, Brooks DA (2010) Lysosomal storage disease: revealing lysosomal function and physiology. Physiology 25(2):102–115

    Article  CAS  PubMed  Google Scholar 

  121. Gregoriadis G, Ryman BE (1972) Lysosomal localization of -fructofuranosidase-containing liposomes injected into rats. Biochem J 129(1):123–133

    CAS  PubMed  PubMed Central  Google Scholar 

  122. PATEL HM, RYMAN BE (1974) α-Mannosidase in zinc-deficient rats: possibility of liposomal therapy in mannosidosis. Biochem Soc Trans 2(5):1014–1017

    Article  CAS  Google Scholar 

  123. Cabrera I, Abasolo I, Corchero JL, Elizondo E, Gil PR, Moreno E et al (2016) α-Galactosidase-a loaded-nanoliposomes with enhanced enzymatic activity and intracellular penetration. Adv Healthc Mater 5(7):829–840

    Article  CAS  PubMed  Google Scholar 

  124. Hamill KM, Wexselblatt E, Tong W, Esko JD, Tor Y (2017) Delivery of cargo to lysosomes using GNeosomes. In: Öllinger K, Appelqvist H (eds) Lysosomes: methods and protocols. Springer New York, New York, pp 151–163

    Chapter  Google Scholar 

  125. Barrias CC, Lamghari M, Granja PL, Sá Miranda MC, Barbosa MA (2005) Biological evaluation of calcium alginate microspheres as a vehicle for the localized delivery of a therapeutic enzyme. J Biomed Mater Res A 74A(4):545–552

    Article  CAS  Google Scholar 

  126. Ghaffarian R, Roki N, Abouzeid A, Vreeland W, Muro S (2016) Intra- and trans-cellular delivery of enzymes by direct conjugation with non-multivalent anti-ICAM molecules. J Control Release 238:221–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Giannotti MI, Esteban O, Oliva M, García-Parajo MF, Sanz F (2011) pH-Responsive polysaccharide-based polyelectrolyte complexes as nanocarriers for lysosomal delivery of therapeutic proteins. Biomacromolecules 12(7):2524–2533

    Article  CAS  PubMed  Google Scholar 

  128. Giannotti MI, Abasolo I, Oliva M, Andrade F, García-Aranda N, Melgarejo M et al (2016) Highly versatile polyelectrolyte complexes for improving the enzyme replacement therapy of lysosomal storage disorders. ACS Appl Mater Interfaces 8(39):25741–25752

    Article  CAS  PubMed  Google Scholar 

  129. Thekkedath R, Koshkaryev A, Torchilin VP (2013) Lysosome-targeted octadecyl-rhodamine B-liposomes enhance lysosomal accumulation of glucocerebrosidase in Gaucher’s cells in vitro. Nanomedicine 8(7):1055–1065

    Article  CAS  PubMed  Google Scholar 

  130. Gao W, Cao W, Zhang H, Li P, Xu K, Tang B (2014) Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au–ZnO hybrid nanoparticles. Chem Commun 50(60):8117–8120

    Article  CAS  Google Scholar 

  131. Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C (2013) Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS Nano 7(6):5091–5101

    Article  CAS  PubMed  Google Scholar 

  132. Xue X, Wang L-R, Sato Y, Jiang Y, Berg M, Yang D-S et al (2014) Single-walled carbon nanotubes alleviate autophagic/lysosomal defects in primary glia from a mouse model of alzheimer’s disease. Nano Lett 14(9):5110–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Härtig W, Kacza J, Paulke B-R, Grosche J, Bauer U, Hoffmann A et al (2009) In vivo labelling of hippocampal β-amyloid in triple-transgenic mice with a fluorescent acetylcholinesterase inhibitor released from nanoparticles. Eur J Neurosci 31(1):99–109

    Article  PubMed  Google Scholar 

  134. Yang Z, Zhang Y, Yang Y, Sun L, Han D, Li H et al (2010) Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease. Nanomed Nanotechnol Biol Med 6(3):427–441

    Article  CAS  Google Scholar 

  135. Singh B, Maharjan S, Park T-E, Jiang T, Kang S-K, Choi Y-J et al (2015) Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Macromol Biosci 15(5):622–635

    Article  CAS  PubMed  Google Scholar 

  136. Kelley VA, Schorey JS (2003) Mycobacterium’s arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Mol Biol Cell 14(8):3366–3377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dowdy SF (2017) Overcoming cellular barriers for RNA therapeutics. Nat Biotechnol 35:222–229

    Article  CAS  PubMed  Google Scholar 

  138. Mazzarello P, Bentivoglio M (1998) The centenarian Golgi apparatus. Nature 392:543–544

    Article  CAS  PubMed  Google Scholar 

  139. Aridor M, Hannan LA (2008) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1(11):836–851

    Article  Google Scholar 

  140. Wlodkowic D, Skommer J, McGuinness D, Hillier C, Darzynkiewicz Z (2009) ER–Golgi network—a future target for anti-cancer therapy. Leuk Res 33(11):1440–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Boelens J, Lust S, Offner F, Bracke ME, Vanhoecke BW (2007) The endoplasmic reticulum: a target for new anticancer drugs. In Vivo 21(2):215–226

    CAS  PubMed  Google Scholar 

  142. Paschen W, Frandsen A (2008) Endoplasmic reticulum dysfunction – a common denominator for cell injury in acute and degenerative diseases of the brain? J Neurochem 79(4):719–725

    Article  Google Scholar 

  143. Pópulo H, Lopes JM, Soares P (2012) The mTOR signalling pathway in human cancer. Int J Mol Sci 13(2):1886–1918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Drenan RM, Liu X, Bertram PG, Zheng XFS (2004) FKBP12-Rapamycin-associated protein or mammalian target of Rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the golgi apparatus. J Biol Chem 279(1):772–778

    Article  CAS  PubMed  Google Scholar 

  145. Chernenko T, Matthäus C, Milane L, Quintero L, Amiji M, Diem M (2009) Label-free raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems. ACS Nano 3(11):3552–3559

    Article  CAS  PubMed  Google Scholar 

  146. Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30(14):2790–2798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Price P, Griffiths J (1994) Tumour pharmacokinetics?—we do need to know. Lancet 343(8907):1174–1175

    Article  CAS  PubMed  Google Scholar 

  148. Siepmann J, Siepmann F, Florence AT (2006) Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms. Local Control Drug Deliv Brain 314(2):101–119

    CAS  Google Scholar 

  149. Florence AT (1997) The oral absorption of micro- and nanoparticulates: neither exceptional nor unusual. Pharm Res 14(3):259–266

    Article  CAS  PubMed  Google Scholar 

  150. Willmott N, Cummings J, Stuart JFB, Florence AT (1985) Adriamycin-loaded albumin microspheres: preparation, in vivo distribution and release in the rat. Biopharm Drug Dispos 6(1):91–104

    Article  CAS  PubMed  Google Scholar 

  151. Decuzzi P, Ferrari M (2007) The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28(18):2915–2922

    Article  CAS  PubMed  Google Scholar 

  152. Decuzzi P, Ferrari M (2008) Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials 29(3):377–384

    Article  CAS  PubMed  Google Scholar 

  153. Cristini V, Sinek J, Frieboes H (2005) Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Cancer Res 65(9 Supplement):1196

    Google Scholar 

  154. Farris RJ (1968) Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Trans Soc Rheol 12(2):281–301

    Article  Google Scholar 

  155. Lionberger RA (2002) Viscosity of bimodal and polydisperse colloidal suspensions. Phys Rev E 65(6):061408–061418

    Article  CAS  Google Scholar 

  156. Semwogerere D, Morris JF, Weeks ER (2007) Development of particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 581:437–451

    Article  Google Scholar 

  157. Frank M, Anderson D, Weeks ER, Morris JF (2003) Particle migration in pressure-driven flow of a brownian suspension. J Fluid Mech 493:363–378

    Article  Google Scholar 

  158. Sakamoto J, Annapragada A, Decuzzi P, Ferrari M (2007) Antibiological barrier nanovector technology for cancer applications. Expert Opin Drug Deliv 4(4):359–369

    Article  CAS  PubMed  Google Scholar 

  159. Verberg R, Alexeev A, Balazs AC (2006) Modeling the release of nanoparticles from mobile microcapsules. J Chem Phys 125(22):224712

    Article  PubMed  CAS  Google Scholar 

  160. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3(2):133–149

    Article  PubMed  PubMed Central  Google Scholar 

  161. Oberdörster G (2009) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  CAS  Google Scholar 

  162. Sharma A, Madhunapantula SV, Robertson GP (2012) Toxicological considerations when creating nanoparticle-based drugs and drug delivery systems. Expert Opin Drug Metab Toxicol 8(1):47–69

    Article  CAS  PubMed  Google Scholar 

  163. Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101(2):239–253

    Article  CAS  PubMed  Google Scholar 

  164. Farhood H, Gao X, Son K, Lazo JS, Huang L, Barsoum J et al (1994) Cationic liposomes for direct gene transfer in therapy of cancer and other diseases. Ann N Y Acad Sci 716(1):23–35

    Article  CAS  PubMed  Google Scholar 

  165. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M et al (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84(21):7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K et al (2006) Research strategies for safety evaluation of nanomaterials, part v: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32

    Article  CAS  PubMed  Google Scholar 

  167. Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine 2(6):789–803

    Article  CAS  PubMed  Google Scholar 

  168. Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150(5):552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605

    Article  CAS  PubMed  Google Scholar 

  170. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2(1):8–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Stone V, Johnston H, Schins RPF (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39(7):613–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge UGC for providing D.S. Kothari Postdoctoral Fellowship to Sreeranjini Pulakkat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vandana B. Patravale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dhoble, S., Dhage, S., Pulakkat, S., Patravale, V.B. (2019). Opportunities and Challenges in Targeted Carrier-Based Intracellular Drug Delivery: Increased Efficacy and Reduced Toxicity. In: Misra, A., Shahiwala, A. (eds) Novel Drug Delivery Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-13-3642-3_12

Download citation

Publish with us

Policies and ethics