Skip to main content
Book cover

Astrobiology pp 105–121Cite as

Eukaryotes Appearing

  • Chapter
  • First Online:

Abstract

The appearance of eukaryotic cells was a major step in the evolution of terrestrial life. Recent phylogenetic analyses indicate that the Eukaryotes appeared from the Archaebacteria rather than being a distinct domain from Archaebacteria and Eubacteria. The Asgard archaeal group, which shares genes that are otherwise unique to Eukaryotes, has been suggested to be the closest relative to Eukaryotes. However, eukaryotic genes have also been shown to have originated from diverse groups in the Archaebacteria and Eubacteria. Asgard archaeon-like Archaea (Archaebacteria) may have been the host for endosymbiosis of the mitochondrial ancestor (Alphaproteobacteria) and might have been the ancestor of Eukaryotes; nevertheless, horizontal gene transfer from various lineages of Archaebacteria and Eubacteria also appear to have played an important role in the evolution of Eukaryotes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM, Näslund AK, Eriksson AS, Winkler HH, Kurkand CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    Article  CAS  Google Scholar 

  • Barton NH, Briggs DEG, Eisen JA, Goldstein DB, Patel NH (2007) Evolution. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Borrel G, Adam PS, Gribaldo S (2016) Methanogenesis and the wood–Ljungdahl pathway: an ancient, versatile, and vragile association. Genome Biol Evol 8:1706–1711

    Article  CAS  Google Scholar 

  • Burggraf S, Olsen GJ, Stetter KO, Woese CR (1992) A phylogenetic analysis of Aquifex pyrophilus. Syst Appl Microbiol 15:352–356

    Article  CAS  Google Scholar 

  • Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, Frischkorn KR, Tringe SG, Singh A, Markillie LM, Taylor RC, Williams KH, Banfield HF (2015) Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr Biol 25:690–701

    Article  CAS  Google Scholar 

  • Cavalier-Smith T (2002) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76

    Article  CAS  Google Scholar 

  • Ciccarelli FD, Doerks T, Von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287

    Article  CAS  Google Scholar 

  • Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaebacterial origin of eukaryotes. Proc Natl Acad Sci U S A 105:20356–20361

    Article  CAS  Google Scholar 

  • Da Cunha V, Gaia M, Gadelle D, Nasir A, Forterre P (2017) Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet 13(6):e1006810. https://doi.org/10.1371/journal pgen.1006810

    Article  PubMed  PubMed Central  Google Scholar 

  • Dacks JB, Field MC, Buick R, Eme L, Gribaldo S, Roger AJ, Brochier-Armanet C, Devos DP (2016) The changing view of eukaryogenesis – fossils, cells, lineages and how they all come together. J Cell Sci 129:3695–3703

    Article  CAS  Google Scholar 

  • Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I, Lapidus A, Golsman E, Barry K, Koonin EV, Hugenholtz P, Kyrpides N, Wanner G, Richardson P, Keller M, Stetter KO (2008) A korarchaeal genome reveals insights into the evolution of the archaea. Proc Natl Acad Sci U S A 105:8102–8107

    Article  CAS  Google Scholar 

  • Eme L, Sharpe SC, Brown MW, Roger AJ (2014) On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb Perspect Biol 6:a016139

    Article  Google Scholar 

  • Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG (2017) Archaea and the origin of eukaryotes. Nat Rev Microbiol 15:711–723

    Article  CAS  Google Scholar 

  • Evans PN, Parks DH, Chadwick GL, Robbin SJ, Orphan VJ, Golding SD, Tyson GW (2015) Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science 350:434–438

    Article  CAS  Google Scholar 

  • Foster PG, Cox CJ, Embley TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Philos Trans R Soc Lond Ser B Biol Sci 364:2197–2207

    Article  Google Scholar 

  • Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413. https://doi.org/10.1038/nrmicro2578

    Article  CAS  PubMed  Google Scholar 

  • Furukawa R, Nakagawa M, Kuroyanagi T, Yokobori S, Yamagishi A (2017) Quest for ancestors of eukaryal cells based on phylogenetic analyses of aminoacyl tRNA synthetases. J Mol Evol 84:51–66

    Article  CAS  Google Scholar 

  • Guy L, Ettema TJG (2011) The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbial 19:580–587

    Article  CAS  Google Scholar 

  • Harish A, Kurland CG (2017) Akaryotes and Eukaryotes are independent descendants of a universal common ancestor. Biochimie 138:168–183

    Article  CAS  Google Scholar 

  • Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the universal ancestor. Genome Res 13:407–412

    Article  CAS  Google Scholar 

  • Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y, Dudek N, Relman DA, Finstad KM, Amundson R, Thomas BC, Banfield JF (2016) A new view of the tree of life. Nat Microbiol 1:16048. https://doi.org/10.1038/nmicrobiol.2016.48

    Article  CAS  PubMed  Google Scholar 

  • Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A 86:9355–9359

    Article  CAS  Google Scholar 

  • Karnkowska A, Vacek V, Zubáčová Z, Treitli SC, Petrželková R, Eme L, Novák L, Zárský V, Barlow LD, Herman EK, Soukal P, Hroudová M, Doležal P, Stairs CW, Roger AJ, Eliáš M, Dacks JB, Vlček Č, Hampl V (2016) A eukaryote without a mitochondrial organelle. Curr Biol 26:1274–1284

    Article  CAS  Google Scholar 

  • Kelly S, Wickstead B, Gull K (2011) Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc R Soc Lond B Biol Sci 278:1009–1018

    Article  CAS  Google Scholar 

  • Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ, Bryant D, Hazkani-Covo E, Mclnerney JO, Landan G, Martin WF (2015) Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–432

    Article  CAS  Google Scholar 

  • Lake JA, Rivera MC (1994) Was the nucleus the first endosymbiont? Proc Natl Acad Sci U S A 91:2880–2881

    Article  CAS  Google Scholar 

  • Lake JA, Henderson E, Oakes M, Clark MW (1984) Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA 81:3786–3790

    Article  CAS  Google Scholar 

  • Langworthy TA, Holzer G, Zeikus JG, Tornabene TG (1983) Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfotobacterium commune. Syst Appl Microbiol 4:1–17

    Article  CAS  Google Scholar 

  • López-García P, Moreira D (1999) Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci 24:88–93

    Article  Google Scholar 

  • López-García P, Moreira D (2015) Open questions on the origin of eukaryotes. Trends Ecol Evol 30:697–708

    Article  Google Scholar 

  • Margulis L (1970) Origin of eukaryotic cells. Yale University Press, New Haven

    Google Scholar 

  • Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41

    Article  CAS  Google Scholar 

  • Martin WF, Garg S, Zimorski V (2015) Endosymbiotic theories for eukaryote origin. Phil Trans R Soc B 370:20140330. https://doi.org/10.1098/rstb.2014.0330

    Article  CAS  PubMed  Google Scholar 

  • Martin WF, Neukirchen S, Zimorski V, Gould SB, Sousa FL (2016) Energy for two: new archaeal lineages and the origin of mitochondria. BioEssays 38:850–856

    Article  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A, De Wacher R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12:1166–1173

    CAS  PubMed  Google Scholar 

  • Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, kanai A, Atomi H, Takai K, Takami H (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223

    Article  CAS  Google Scholar 

  • Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol Biol Evol 24:1752–1760

    Article  CAS  Google Scholar 

  • Pittis AA, Gabaldón T (2016) Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531:101–104

    Article  CAS  Google Scholar 

  • Podar M, Anderson I, Makarova KS et al (2008) A genomic analysis of the archaeal system Ignicoccus hospitalis-Nanoarchaeum equitans. Genome Biol 9:1–18

    Article  Google Scholar 

  • Raymann K, Brochier-Armanet C, Gribaldo S (2015) The two-domain tree of life is linked to a new root for the Archaea. Proc Natl Acad Sci U S A 112:6670–6675

    Article  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  CAS  Google Scholar 

  • Rivera MC, Lake JA (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257:74–76

    Article  CAS  Google Scholar 

  • Rochette NC, Brochier-Armanet C, Gouy M (2014) Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 31:832–845

    Article  CAS  Google Scholar 

  • Roger AJ, Svärd SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci U S A 95:229–234

    Article  CAS  Google Scholar 

  • Sagan L (1967) On the origin of mitosing cells. J Theor Biol 14:255–274

    Article  CAS  Google Scholar 

  • Saruhashi S, Hamada K, Miyata D, Horiike T, Shinozawa T (2008) Comprehensive analysis of the origin of eukaryotic genomes. Genes Genet Syst 83:285–291

    Article  Google Scholar 

  • Serbus LR, Casper-Lindley C, Landmann F, Sullivan W (2008) The genetics and cell biology of Wolbachia-host interactions. Annu Rev Genet 42:683–707

    Article  CAS  Google Scholar 

  • Sousa FL, Neukirchen S, Allen JF, Lane N, Martin WF (2016) Lokiarchaeon is hydrogen dependent. Nat Microbiol 1:16034. https://doi.org/10.1038/nmicrobiol.2016.34

    Article  CAS  PubMed  Google Scholar 

  • Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R, Schleper C, Guy L, Ettema TJ (2015) Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521:173–179

    Article  CAS  Google Scholar 

  • Spang A, Caceres EF, Ettema TJG (2017) Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science 357:eaaf3883. https://doi.org/10.1126/science.aaf3883

    Article  CAS  PubMed  Google Scholar 

  • Thiergart T, Landan G, Schenk M, Dagan T, Martin WF (2012) An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biol Evol 4:466–485

    Article  CAS  Google Scholar 

  • Ueno Y, Ono S, Rumble D, Maruyama S (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim Cosmochim Acta 72:5675–5691

    Article  CAS  Google Scholar 

  • Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, Tyson GW (2016) Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 1:16170. https://doi.org/10.1038/nmPNicrobiol.2016.170

    Article  CAS  PubMed  Google Scholar 

  • Villanueva L, Sinninghe Damsté JS, Schouten S (2014) A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nat Rev Microbiol 12:438–448

    Article  CAS  Google Scholar 

  • Wagner A, Whitaker RJ, Krause DJ, Heilers J-H, van Wolferen M, van der Does C, Albers S-V (2017) Mechanisms of gene flow in archaea. Nat Rev Microbiol 15:492–501

    Article  CAS  Google Scholar 

  • Williams TA, Embley TM (2014) Archaeal “Dark Matter” and the origin of Eukaryotes. Genome Biol Evol 6(3):474–481

    Article  Google Scholar 

  • Williams TA, Foster PG, Nye TM, Cox CJ, Embley TM (2012) A congruent phylogenomic signal places eukaryotes within the Archaea. Proc R Soc Lond B Biol Sci 279:4870–4879

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci 87:4576–4579

    Article  CAS  Google Scholar 

  • Yokobori S, Yamagishi A (2013) Birth of Eukaryotes (eukaryotic cell). In: Yamagishi A (ed) Astrobiology: seeking origin of life in space, Dojin Biosciences No. 6. Kagaku Dojin, Kyoto, pp 156–168 (in Japanese)

    Google Scholar 

  • Yokobori S, Nakajima Y, Akanuma S, Yamagishi A (2016) Birth of archaeal cells—molecular phylogenetic analyses of G1P dehydrogenase, G3P dehydrogenases, and glycerol kinase suggest derived features of archaeal membranes having G1P-polar lipids. Archaea. Article ID 1802675. https://doi.org/10.1155/2016/1802675

    Article  Google Scholar 

  • Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630

    Article  CAS  Google Scholar 

  • Yutin N, Wolf MY, Wolf MI, Koonin EV (2009) The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9. https://doi.org/10.1186/1745-6150-4-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz KW, Anantharaman K, Starnawski P, Kjeldsen KU, Stott MB, Nunoura T, Banfield JF, Schramm A, Baker BJ, Spang A, Ettema TJG (2017) Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541:353–358

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yokobori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yokobori, Si., Furukawa, R. (2019). Eukaryotes Appearing. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_8

Download citation

Publish with us

Policies and ethics