Advertisement

Astrobiology pp 399-407 | Cite as

Enceladus: Evidence and Unsolved Questions for an Ice-Covered Habitable World

  • Yasuhito SekineEmail author
  • Takazo Shibuya
  • Shunichi Kamata
Chapter
  • 1.2k Downloads

Abstract

The icy midsized satellite of Saturn—Enceladus—has become the central to astrobiology since the finding of its dramatic ongoing geological activity. The water-rich plumes erupting from the warm fractures on the icy crust near the South Pole of Enceladus originate from its global subsurface ocean that interacts with the rocky core. In situ measurements of the plume by the Cassini spacecraft showed that the ocean contains dissolved gas species, such as CO2, NH3, CH4, and H2, which can provide disequilibrium redox energy to support methanogenic life. The salt composition of the plume indicates an alkaline pH of the ocean (pH ~9 to 11). The plume also contains significant amounts of organic matter, including high-molecular-weight organic compounds, although its origin remains unclear. Ongoing hydrothermal activity at temperatures greater than 90 °C is highly likely to exist on the seafloor or within the rocky core, which could play a role in sustaining the chemical disequilibrium within the ocean. These observations suggest that Enceladus is a planetary body thus far that currently meets the fundamental requirements for habitability and life—liquid water, organic matter, and bioavailable energy—beyond Earth.

Keywords

Icy satellite Geochemistry Habitability 

Notes

Acknowledgments

This work was supported by MEXT KAKENHI Grant Number JP 17H0655, 17H06456, and 17H06457.

References

  1. Amend JP, McCollom TM, Hentscher M, Bach W (2011) Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta 75:5736–5748CrossRefGoogle Scholar
  2. Beuthe M, Rivoldini A, Trinh A (2016) Enceladus’s and Dione’s floating ice shells supported by minimum stress isostasy. Geophys Res Lett 43:10088–10096CrossRefGoogle Scholar
  3. Bocklelée-Morvan D, Crovisier J, Mumma MJ, Weaver HA (2004) The composition of cometary volatiles. In: Festou MC, Keller HU, Weaver HA (eds) Comets II. Univ. Arizona Press, Tucson, pp 391–423Google Scholar
  4. Čadek O et al (2016) Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape and libration data. Geophys Res Lett 43:5653–5660CrossRefGoogle Scholar
  5. Canup RM, Ward WR (2006) A common mass scaling for satellite systems of gaseous planets. Nature 441:834–839CrossRefGoogle Scholar
  6. Choblet G et al (2017) Powering prolonged hydrothermal activity inside Enceladus. Nature Astron 1:841–847.  https://doi.org/10.1038/s41550-017-0289-8 CrossRefGoogle Scholar
  7. Cody GD, Heying E, Alexander CMO, Nittler LR, Kilcoyne ALD, Sandford SA, Stroud RM (2011) Establishing a molecular relationship between chondritic and cometary organic solids. Proc Natl Acad Sci 108:19171–19176CrossRefGoogle Scholar
  8. Crida A, Charnoz S (2012) Formation of regular satellites from ancient massive rings in the solar system. Science 338:1196–1199CrossRefGoogle Scholar
  9. Ćuk M, Dones L, Nesvorny D (2016) Dynamical evidence for a late formation of Saturn’s moons. Astrophys J 820:97 (16 pp)CrossRefGoogle Scholar
  10. Fuller J, Luan J, Quataert E (2016) Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems. Mon Not R Astron Soc 458:3867–3879CrossRefGoogle Scholar
  11. Glein CR, Zolotov MY, Shock EL (2008) The oxidation state of hydrothermal systems on early Enceladus. Icarus 197:157–163CrossRefGoogle Scholar
  12. Glein CR, Baross JA, Waite JH Jr (2015) The pH of Enceladus’ ocean. Geochim Cosmochim Acta 162:202–219CrossRefGoogle Scholar
  13. Goesmann F et al (2015) Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry. Science 349:aab0689 1–3CrossRefGoogle Scholar
  14. Hansen CJ et al (2011) The composition and structure of the Enceladus plume. Geophys Res Lett 38:L11202.  https://doi.org/10.1029/2011GL047415 CrossRefGoogle Scholar
  15. Hsu H-W et al (2015) Silica nanoparticles as an evidence of hydrothermal activities at Enceladus. Nature 519:207–210CrossRefGoogle Scholar
  16. Iess L et al (2014) The gravity field and interior structure of Enceladus. Science 344:78–80CrossRefGoogle Scholar
  17. Ingersoll AP, Pankine AA (2010) Subsurface heat transfer on Enceladus: conditions under which melting occurs. Icarus 206:594–607CrossRefGoogle Scholar
  18. Jaumann R et al (2009) Icy satellites: geological evolution and surface processes. In: Dougherty M, Esposito L, Krimigis S (eds) Saturn from Cassini-Huygens. Springer, Heidelberg, pp 637–681CrossRefGoogle Scholar
  19. Kamata S, Nimmo F (2017) Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. Icarus 284:387–393CrossRefGoogle Scholar
  20. Kebukawa Y, Kilcoyne ALD, Cody GD (2013) Exploring the potential formation of organic solids in chondrites and comets through polymerization of interstellar formaldehyde. Astrophys J 771(19):1–12Google Scholar
  21. Keller LP et al (2006) Infrared spectroscopy of comet 81P/wild 2 samples return by stardust. Science 314:1728–1731CrossRefGoogle Scholar
  22. Kelley DS et al (2005) A serpentine-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434CrossRefGoogle Scholar
  23. Khawaja N et al (2015) Organic compounds from Enceladus’ sub-surface ocean as seen by CDA. In: European Planetary Science Congress 2015, 10: 652Google Scholar
  24. Le Gall A et al (2017) Thermally anomalous features in the subsurface of Enceladus’s south polar terrain. Nature Astron 1:0063.  https://doi.org/10.1038/s41550-017-0063 CrossRefGoogle Scholar
  25. Mayhew LE, Ellison ET, McCollom TM, Trainor TP, Templeton AS (2013) Hydrogen generation from low-temperature water-rock reactions. Nat Geosci 6:478–484CrossRefGoogle Scholar
  26. McCollom TM, Shock EL (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta 61:4375–4391CrossRefGoogle Scholar
  27. McKay CP, Porco CC, Altheide T, Davis WL, Kral TA (2008) The possible origin and persistence of life on Enceladus and detection of biomarkers in the plume. Astrobiology 8:909–919CrossRefGoogle Scholar
  28. McKinnon WB (2015) Effect of Enceladus’s rapid synchronous spin on interpretation of Cassini gravity. Geophys Res Lett 41:2137–2143CrossRefGoogle Scholar
  29. Meyer J, Wisdom J (2007) Tidal heating in Enceladus. Icarus 188:535–539CrossRefGoogle Scholar
  30. Nakajima M, Ingersoll AP (2016) Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus 272:309–318CrossRefGoogle Scholar
  31. O’Neill CO, Nimmo F (2010) The role of episodic overturn in generating the surface geology and heat flow on Enceladus. Nat Geosci 3:88–91CrossRefGoogle Scholar
  32. Porco CC et al (2006) Cassini observes the active South Pole of Enceladus. Science 311:1393–1401CrossRefGoogle Scholar
  33. Postberg F et al (2009) Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459:1098–1101CrossRefGoogle Scholar
  34. Postberg F, Schmidt J, Hillier J, Kempf S, Srama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622CrossRefGoogle Scholar
  35. Postberg F et al (2018) Macromolecular organic compounds from the depths of Enceladus. Nature 558:564–568CrossRefGoogle Scholar
  36. Schmidt J, Brilliantov N, Spahn F, Kempf S (2008) Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451:685–688CrossRefGoogle Scholar
  37. Sekine Y, Genda H (2012) Giant impacts in the Saturnian system: a possible origin of diversity in the inner mid-sized satellites. Planet Space Sci 63–64:133–138CrossRefGoogle Scholar
  38. Sekine Y et al (2015) High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Comm 6:8604.  https://doi.org/10.1038/ncomms9604 CrossRefGoogle Scholar
  39. Sekine Y, Genda H, Kamata S, Funatsu T (2017) The Charon-forming giant impact as a source of Pluto’s dark equatorial regions. Nature Astron 1:0031.  https://doi.org/10.1038/s41550-016-0031 CrossRefGoogle Scholar
  40. Shibuya T, Komiya T, Nakamura K, Takai K, Maruyama S (2010) Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean. Precambrian Res 182:230–238CrossRefGoogle Scholar
  41. Shibuya T et al (2013) Reactions between basalt and CO2-rich seawater at 250 and 350°C, 500 bars: implications for the CO2 sequestration into the modern oceanic crust and composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem Geol 359:1–9CrossRefGoogle Scholar
  42. Shibuya T et al (2015) Hydrogen-rich hydrothermal environments in the Hadean ocean inferred from serpentinization of komatiites at 300 °C and 500 bar. Prog Earth and Planet Sci 2:46.  https://doi.org/10.1186/s40645-015-0076-z CrossRefGoogle Scholar
  43. Shibuya T, Russell M, Takai K (2016) Free energy distribution and chimney minerals in Hadean submarine alkaline vent systems; importance of iron redox reactions under anoxic condition. Geochim Cosmochim Acta 175:1–19CrossRefGoogle Scholar
  44. Shoji D, Hussmann H, Sohl F, Kurita K (2014) Non-steady state tidal heating of Enceladus. Icarus 235:75–85CrossRefGoogle Scholar
  45. Spencer JR et al (2013) Enceladus heat flow from high spatial resolution thermal emission observations. In: European Planetary Space Congress 2013, 8: 840Google Scholar
  46. Thomas R et al (2016) Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264:37–47CrossRefGoogle Scholar
  47. Ueda H et al (2016) Reactions between komatiite and CO2-rich seawater at 250 °C and 350 °C, 500 bars: implications for hydrogen generation in the Hadean seafloor hydrothermal system. Prog Earth Planet Sci 3:35.  https://doi.org/10.1186/s40645-016-0111-8 CrossRefGoogle Scholar
  48. Van Hoolst T, Baland R–M, Trinh A (2016) The diumal libration and interior structure of Enceladus. Icarus 277:311–318CrossRefGoogle Scholar
  49. Waite JH Jr et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–490CrossRefGoogle Scholar
  50. Waite JH et al (2017) Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science 356:155–159CrossRefGoogle Scholar
  51. Yoshizaki M et al (2009) H2 generation by experimental hydrothermal alteration of komatiitic glass at 300°C and 500 bars: a preliminary result from on-going experiment. Geochem J 43:17–22CrossRefGoogle Scholar
  52. Zolotov MY (2007) An oceanic composition on early and today’s Enceladus. Geophys Res Lett 34:L23203.  https://doi.org/10.1029/2007GL031234 CrossRefGoogle Scholar
  53. Zolotov MY (2012) Aqueous fluid composition in CI chondritic materials: chemical equilibrium assessments in closed systems. Icarus 220:713–729CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yasuhito Sekine
    • 1
    Email author
  • Takazo Shibuya
    • 2
  • Shunichi Kamata
    • 3
  1. 1.Earth-Life InstituteTokyo Institute of TechnologyMeguroJapan
  2. 2.Department of Subsurface Geobiological Analysis and ResearchJapan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  3. 3.Creative Research InstitutionHokkaido UniversitySapporoJapan

Personalised recommendations