Abstract
Jupiter’s moon Europa may have an internal ocean of liquid water, along with the chemical compounds and energy source that life requires. Europa is covered by the solid icy shell, similar to other solid bodies in the outer solar system. The solid icy shell fractures and deforms creating cracks, ridges, and bands in relatively a recent period. Galileo spacecraft data indicates a warm interior, which means a convecting icy shell above a liquid water ocean. In addition, Hubble Space Telescope recently found a signature of active water plumes from the southern hemisphere. Here the current knowledge on the characteristic of Europa, geology, composition, interior, and surrounding environment, in the relation to the possible presence of life will be summarized. Future spacecraft exploration plans for Europa and their science objectives are also introduced. With the understanding of Europa’s potential for life, we can consider another style of habitable world hidden by the icy surface, “deep habitat,” which is different from Earth’s one, and can address the fundamental question: Are we alone in the universe?
Keywords
- Satellite of Jupiter
- Ice
- Habitability
- Tectonics
- Interior
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Bierhaus EB et al (2009) Europa’s crater distributions and surface ages. In: Europa. The University of Arizona Press, Tucson, pp 161–180
Carlson RW et al (1999) Hydrogen peroxide on the surface of Europa. Science 283:2062
Chyba CF, Phillips CB (2001) Possible ecosystems and the search for life on Europa. Proc Natl Acad Sci U S A 98:801–804
Gaidos EJ, Nimmo F (2000) Tectonics and water on Europa. Nature 405:637
Goodman JC et al (2004) Hydrothermal plume dynamics on Europa: implications for chaos formation. J Geophys Res 109. https://doi.org/10.1029/2003JE002073
Grasset O et al (2013) JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet Space Sci 78:1–21
Greeley R et al (2004) Geology on Europa. In: Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, Cambridge, pp 329–362
Greenberg R et al (1998) Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus 135:64–78
Hall DT et al (1995) Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 373:677–679
Hand KP et al (2015) Europa’s surface color suggests an ocean rich with sodium chloride. Geophys Res Lett 42:3174–3178
Hansen GB et al (2004) Amorphous and crystalline ice on the Galilean satellites: a balance between thermal and radiolytic processes. J Geophys Res 109:E01012. https://doi.org/10.1029/2003JE002149
Hoppa GV et al (1999) Formation of cycloidal features on Europa. Science 285:1899–1902
Kattenhorn SA, Prockter LM (2014) Evidence for subduction in the ice shell of Europa. Nat Geosci 7:762–767
Khurana KK et al (1998) Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395:777–780
Kimura J et al (2007) Tectonic history of Europa: coupling between internal evolution and surface stresses. Earth Planets Space 59:113–125
Kivelson MG et al (1999) Europa and Callisto: induced or intrinsic fields in a periodically varying plasma environment. J Geophys Res 104:4609–4625
Kivelson MG et al (2000) Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:1340–1343
Kivelson MG et al (2002) The permanent and inductive magnetic moments of Ganymede. Icarus 157:507–522
Lane et al (1981) Evidence for sulfur implantation in Europa’s UV absorption band. Nature 292:38–39
Lee S et al (2005) Mechanics of tidally driven fractures in Europa’s ice shell. Icarus 165:267–379
Levison et al (2000) NOTE: planetary impact rates from ecliptic comets. Icarus 143:415–420
Manga M, Michaut C (2017) Formation of lenticulae on Europa by saucer-shaped sills. Icarus 286:261–269
McCord TB et al (1999) Hydrated salt minerals on Europa’s surface from the Galileo Near Infrared Spectrometer (NIMS) investigation. J Geophys Res 104:11,827–11,852
McEwen A (1986) Exogenic and endogenic albedo and color patterns on Europa. J Geophys Res 91:8077–8097
Moore JM et al (2009) Surface properties, regolith, and landscape degradation. In: Europa. The University of Arizona Press, Tucson, pp 329–352
Moroz VI (1965) Infrared spectroscopy of satellites: the moon and the Galilean satellites of Jupiter. Astron Zh 42(1287), translated in Soviet Astron 9: 999–1006
Nimmo F, Gaidos E (2002) Strike-slip motion and double ridge formation on Europa. J Geophys Res 107:1–2. https://doi.org/10.1029/2000JE001476
Nimmo F et al (2007) The goloba shape of Europa: constraints on lateral shell thickness variations. Icarus 191:183–192. https://doi.org/10.1016/j.icarus.2007.04.021
Nna-Mvondo D, Martinez-Frias J (2007) Komatiites: from Earth’s geological settings to planetary and astrobiological contexts. Earth Moon Planet 100:157–179
O’Brien DP et al (2002) A melt-through model for chaos formation on Europa. Icarus 156:152–161
Pilcher CB et al (1972) The Galilean satellites; identification of water frost. Science 178:1087–1089
Porter SB et al (2010) Micrometeorite impact annealing of ice in the outer solar system. Icarus 208:492–498
Quick LC et al (2017) Cryovolcanic emplacement of domes on Europa. Icarus 284:477–488
Roth L et al (2014) Transient water vapor at Europa’s south pole. Science 343:171–174
Saur J et al. (2014) The search for a subsurface ocean in Ganymede with Hubble space telescope observations of its auroral ovals. J Geophys Res 120. https://doi.org/10.1002/2014JA020778
Schenk P, Turtle E (2009) Europa’s impact craters: probes of the icy shell. In: Europa. The University of Arizona Press, Tucson, pp 181–198
Schmidt BE et al (2011) Active formation of ‘chaos terrain’ over shallow subsurface water on Europa. Nature 479:502–505
Sparks WB et al (2016) Probing for evidence of plumes on Europa with HST/STIS. Astrophys J 829:121
Spaun NA et al (1998) Conamara Chaos region, Europa: reconstruction of mobile polygonal ice blocks. Geophys Res Lett 25:4277
Strom RG et al (2015) The inner solar system cratering record and the evolution of impactor population. Astron Astrophys 15:407–434
Thomson RE, Delaney JR (2001) Evidence for a weakly stratified European ocean sustained by seafloor heat flux. J Geophys Res 106:12355–12365
Tufts BR et al (2000) Lithospheric dilation on Europa. Icarus 146:75–97
Vance S et al (2007) Hydrothermal systems in small ocean planets. Astrobiology 7(6):987–1005
Weiss JW (2004) Planetary parameters, in Jupiter: the planet, satellites and magnetosphere. Cambridge University Press, London, pp 699–709
Williams DA et al (2000) A komatiite analog to potential ultramafic materials on Io. J Geophys Res 105:1671–1684
Zahnle K et al (2003) Cratering rates in the outer solar system. Icarus 163:263–289
Zimmer C et al (2000) Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147:329–347
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Kimura, J. (2019). Active Surface and Interior of Europa as a Potential Deep Habitat. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_24
Download citation
DOI: https://doi.org/10.1007/978-981-13-3639-3_24
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-3638-6
Online ISBN: 978-981-13-3639-3
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)