Skip to main content

Prebiotic Complex Organic Molecules in Space

  • Chapter
  • First Online:
Astrobiology

Abstract

As of 2017, about 200 complex organic molecules have been detected in interstellar molecular clouds. It was 1969 when the first organic molecule in space, H2CO, was discovered. Since then many organic molecules were discovered by using the NRAO 11 m (upgraded later to 12 m), Nobeyama 45 m, IRAM 30 m, and other highly sensitive radio telescopes as a result of close collaboration between radio astronomers and microwave spectroscopists. It is noteworthy that many well-known organic molecules such as CH3OH, C2H5OH, (CH3)2O, and CH3NH2 were detected in the 1970s. It is thought that organic molecules are formed on surfaces of cold dust particles in a molecular cloud and then are evaporated by the UV photons emitted from a star inside the molecular cloud.

Organic molecules are known to exist in star-forming regions and in protoplanetary disks where planets are formed. Therefore it was a natural consequence that astronomers considered a relationship between organic molecules in space and the origin of life. Several astronomers challenged to detect glycine and other prebiotic molecules without success. ALMA is expected to detect such important materials to further examine the “exogenous delivery” hypothesis of organic molecules.

In this chapter I summarize the history of the searches for complex organic molecules in space together with difficulties in observing very weak signals from larger molecular species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altwegg K, Balsiger H, Bar-Nun A et al (2016) Prebiotic chemicals – amino acid and phosphorus – in the coma of comet 67P/Churyumov-Gerasimenko. Sci Adv 2:e1600285

    Article  Google Scholar 

  • Bailey J (2001) Astronomical sources of circularly polarized light and the origin of homochirality. Orig Life Evol Biosph 31:167–183

    Article  CAS  Google Scholar 

  • Belloche A et al (2009) Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl formate and n-propyl cyanide in Sagittarius B2(N). Astron Astrophys 499:215–232

    Article  CAS  Google Scholar 

  • Belloche A, Garrod RT, Müller HSP, Menten KM (2014) Detection of a branched alkyl molecule in the interstellar medium: iso-propyl cyanide. Science 345:1584–1587

    Article  CAS  Google Scholar 

  • Brown RD et al (1979) A search for interstellar glycine. Mon Not R Astron Soc 186:5P–8P

    Article  CAS  Google Scholar 

  • CDMS (The Cologne Database for Molecular Spectroscopy) (2001) http://www.astro.uni-koeln.de/cdms/molecules. Accessed 18 Dec 2017

  • Chronological Scientific Tables (Rikanenpyou) (2017) National astronomical Observatory of Japan and Maruzen

    Google Scholar 

  • Deamer DW, Dworkin JP, Sandford SA, Bernstein MP, Allamandola LJ (2002) The first cell membranes. Astrobiology 2:371–381

    Article  CAS  Google Scholar 

  • Dickens JE et al (1997) Hydrogenation of interstellar molecules: a survey for methylenimine (CH2NH). Astrophys J 479:307–312

    Article  CAS  Google Scholar 

  • Ehrenfreund P et al (2002) Astrophysical and astrochemical insights into the origin of life. Rep Prog Phys 65:1427–1487

    Article  CAS  Google Scholar 

  • Elsila JE, Dworkin JP, Bernstein MP, Martin MP, Sandford SA (2007) Mechanisms of amino acid formation in interstellar ice analogs. Astrophys J 660:911–918

    Article  CAS  Google Scholar 

  • Herbst E, van Dishoeck E (2009) Complex organic interstellar molecules. Annu Rev Astron Astrophys 47:427–480

    Article  CAS  Google Scholar 

  • Hollis JM, Lovas FJ, Jewell PR (2000) Interstellar glycolaldehyde: the first sugar. Astrophys J 540:L107–L110

    Article  CAS  Google Scholar 

  • Hollis JM, Jewell PR, Lovas FJ, Remijan A (2004) Green bank telescope observations of interstellar glycolaldehyde: low-temperature sugar. Astrophys J 613:L45–L48

    Article  CAS  Google Scholar 

  • Holtom PD et al (2005) A combined experimental and theoretical study on the formation of the amino acid glycine (NH2CH2COOH) and its isomer (CH3NHCOOH) in extraterrestrial ices. Astrophys J 626:940–952

    Article  CAS  Google Scholar 

  • Jørgensen JK et al (2012) Detection of the simplest sugar, Glycolaldehyde, in a solar-type protostar with ALMA. Astrophys J 757:L4 (6 pp.)

    Article  Google Scholar 

  • Kaifu N et al (2004) A 8.8–50GHz complete spectral line survey toward TMC-1 I. Survey data. Publ Astron Soc Jpn 56:69–173

    Article  CAS  Google Scholar 

  • Kim YS, Kaiser RI (2011) On the formation of amines (RNH2) and the cyanide anion (CN) in electron-irradiated ammonia-hydrocarbon interstellar model ices. Astrophys J 729:68

    Article  Google Scholar 

  • Krueger FR, Korth A, Kissel J (1991) The organic matter of Comet Halley as inferred by joint gas phase and solid phase analyses. Space Sci Rev 56:167

    Article  Google Scholar 

  • Kuan YJ et al (2003) A search for interstellar pyrimidine. Mon Not R Astron Soc 345:650–656

    Article  CAS  Google Scholar 

  • McGuire BA et al (2016) Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O). Science 352:1449–1452

    Article  CAS  Google Scholar 

  • McKellar A (1940) Evidence for the molecular origin of some Hitherto unidentified interstellar lines. Pub Astron Soc Pac 52:187–192

    Article  CAS  Google Scholar 

  • Ohishi M (2016) Search for complex organic molecules in space. J Phys Conf Ser 728:052002

    Article  Google Scholar 

  • Ohishi M et al (2018) Detection of new methylamine (CH3NH2) sources: candidates for future glycine surveys. Submitted to Publ Astr Soc Japan

    Google Scholar 

  • Rubenstein E, Bonner WA, Noyes HP, Brown GS (1983) Supernovae and life. Nature 306:118

    Article  Google Scholar 

  • Simon MN, Simon M (1973) Search for interstellar acrylonitrile, pyrimidine, and pyridine. Astrophys J 184:757–761

    Article  CAS  Google Scholar 

  • Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in meteorites – significance and mechanisms of formation. Geochim Cosmochim Acta 45:563

    Article  CAS  Google Scholar 

  • Suzuki T et al (2016) Survey observations of a possible glycine precursor, methanimine (CH2NH). Astrophys J 825:79

    Article  Google Scholar 

  • Tashiro T et al (2017) Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549:516–518

    Article  Google Scholar 

  • Theule P et al (2011) Hydrogenation of solid hydrogen cyanide HCN and methanimine CH2NH at low temperature. Astron Astrophys 534:A64

    Article  Google Scholar 

  • Weinreb S, Barrett AH, Meeks ML, Henry JC (1963) Radio observations of OH in the interstellar medium. Nature 200:829–831

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Amie Elsila for permitting the use of Fig. 2.1. This work was supported by the JSPS Kakenhi Grant Number JP15H03646. We utilized the Japanese Virtual Observatory (JVO; http://jvo.nao.ac.jp/) in finding relevant reference papers. This work has made use of NASA’s Astrophysics Data System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Ohishi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohishi, M. (2019). Prebiotic Complex Organic Molecules in Space. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_2

Download citation

Publish with us

Policies and ethics