Skip to main content

Mass Extinction at the Cretaceous–Paleogene (K–Pg) Boundary

  • Chapter
  • First Online:
Astrobiology

Abstract

One of the “Big Five” mass extinctions in the Phanerozoic Eon occurred at the Cretaceous–Paleogene (K–Pg) boundary (66.0 million years ago). The K–Pg mass extinction was triggered by a meteorite impact that produced a crater at Chicxulub on the Yucatán Peninsula, Mexico. The following environmental perturbations might have been induced by the Chicxulub impact and acted as the killing mechanisms for the K–Pg mass extinction: (1) sunlight shielding, (2) sulfuric and nitric acid rain, (3) CO2-induced global warming, (4) ultraviolet penetration, and (5) toxic effects of ground-level ozone. The details of these perturbation events are summarized in this chapter. Based on evidence in sedimentary rocks, we could confirm whether such perturbation events occurred or not. However, it was difficult to reconstruct quantitatively the magnitudes and durations for such perturbation events because the necessary time-resolved information (yearly to millennium-scale) is lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrinier P, Deutsch A, Schärer U, Martinez I (2001) Fast back-reactions of shock-released CO2 from carbonates: an experimental approach. Geochim Cosmochim Acta 65:2615–2632

    Article  CAS  Google Scholar 

  • Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci 109:728–732

    Article  CAS  PubMed  Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Article  CAS  PubMed  Google Scholar 

  • Andrews JE, Tandon SK, Dennis PF (1995) Concentration of carbon dioxide in the Late Cretaceous atmosphere. J Geol Soc 152:1–3

    Article  CAS  Google Scholar 

  • Arinobu T, Ishiwatari R, Kaiho K, Lamolda MA (1999) Spike of pyrosynthetic polycyclic aromatic hydrocarbons associated with an abrupt decrease in δ13C of a terrestrial biomarker at the Cretaceous–Tertiary boundary at Caravaca, Spain. Geology 27:723–726

    Article  CAS  Google Scholar 

  • Bailey JV, Cohen AS, Kring DA (2005) Lacustrine fossil preservation in acidic environments: implications of experimental and field studies for the Cretaceous–Paleogene boundary acid rain trauma. Palaios 20:376–389

    Google Scholar 

  • Banner JL, Hanson GN (1990) Calculation of simultaneous isotopic and trace-element variations during water-rock interaction with applications to carbonate diagenesis. Geochim Cosmochim Acta 54:3123–3137

    Article  CAS  Google Scholar 

  • Beerling DJ, Lomax BH, Royer DL et al (2002) An atmospheric pCO2 reconstruction across the Cretaceous–Tertiary boundary from leaf megafossils. Proc Natl Acad Sci 99:7836–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher CM, Collinson ME, Sweet AR et al (2003) Fireball passes and nothing burns—the role of thermal radiation in the Cretaceous–Tertiary event: evidence from the charcoal record of North America. Geology 31:1061–1064

    Article  Google Scholar 

  • Belcher CM, Collinson ME, Scott AC (2005) Constraints on the thermal power released from the Chicxulub impactor: new evidence from multi-method charcoal analysis. J Geol Soc Lond 162:591–602

    Article  Google Scholar 

  • Belcher CM, Finch P, Collinson ME et al (2009) Geochemical evidence for combustion of hydrocarbons during the K–T impact event. Proc Natl Acad Sci 106:4112–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belcher CM, Hadden RM, Rein G et al (2015) An experimental assessment of the ignition of forest fuels by the thermal pulse generated by the Cretaceous–Palaeogene impact at Chicxulub. J Geol Soc 172:175–185

    Article  Google Scholar 

  • Berner RA (1998) The carbon cycle and carbon dioxide over Phanerozoic time: the role of land plants. Philos Trans R Soc Lond Ser B Biol Sci 353:75–82

    Article  Google Scholar 

  • Bohor BF, Foord EE, Modreski PJ, Triplehorn DM (1984) Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary. Science 224:867–869

    Article  CAS  PubMed  Google Scholar 

  • Bohor BF, Foord EE, Ganapathy R (1986) Magnesioferrite from the Cretaceous–Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57–66

    Article  CAS  Google Scholar 

  • Bohor BF, Modreski PJ, Foord EE (1987) Shocked quartz in the Cretaceous–Tertiary boundary clays: evidence for a global distribution. Science 236:705–709

    Article  CAS  PubMed  Google Scholar 

  • Bown PR (2005) Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary. Geology 33:653–656

    Article  Google Scholar 

  • Brett R (1992) The Cretaceous-Tertiary extinction: a lethal mechanism involving anhydrite target rocks. Geochim Cosmochim Acta 56:3603–3606

    Article  CAS  Google Scholar 

  • Carlisle DB, Braman DR (1991) Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature 352:708–709

    Article  CAS  Google Scholar 

  • Cotton JM, Sheldon ND (2012) New constraints on using paleosols to reconstruct atmospheric pCO2. Geol Soc Am Bull 124:1411–1423

    Article  CAS  Google Scholar 

  • Crocket JH, Paul DK (2004) Platinum-group elements in Deccan mafic rocks: a comparison of suites differentiated by Ir content. Chem Geol 208:273–291

    Article  CAS  Google Scholar 

  • Crutzen PJ (1979) The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Annu Rev Earth Planet Sci 7:443–472

    Article  CAS  Google Scholar 

  • D’Hondt S, Pilson MEQ, Sigurdsson H et al (1994) Surface-water acidification and extinction at the Cretaceous-Tertiary boundary. Geology 22:983–986

    Article  Google Scholar 

  • Frei R, Frei KM (2002) Multi-isotopic and trace element investigation of the Cretaceous–Tertiary boundary layer at Stevns Klint, Denmark – inferences for the origin and nature of siderophile and lithophile element geochemical anomalies. Earth Planet Sci Lett 203:691–708

    Article  CAS  Google Scholar 

  • Ganapathy R (1980) A major meteorite impact on the earth 65 million years ago: evidence from the Cretaceous-Tertiary boundary clay. Science 209:921–923

    Article  CAS  PubMed  Google Scholar 

  • Gardner A, Hildebrand A, Gilmour I (1992) Isotopic composition and organic geochemistry of nitrogen at the Cretaceous/Tertiary boundary. Meteoritics 27:222–223

    Google Scholar 

  • Gilmour I, Boyd S (1988) Nitrogen geochemistry of a Cretaceous-Tertiary boundary site in New Zealand. LPI Contrib 673:58–59

    Google Scholar 

  • Gilmour I, Wolbach WS, Anders E (1990) Early environmental effects of the terminal Cretaceous impact. Geol Soc Am Spec Pap 247:383–390

    Google Scholar 

  • Gilmour I, Russel SS, Arden JW et al (1992) Terrestrial carbon and nitrogen isotopic-ratios from Paleogene-Tertiary boundary nanodiamonds. Science 258:1624–1626

    Article  CAS  PubMed  Google Scholar 

  • Gorham E (1998) Acid deposition and its ecological effects: a brief history of research. Environ Sci Pol 1:153–166

    Article  CAS  Google Scholar 

  • Hildebrand AR, Penfield GT, Kring DA, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geology 19:867–871

    Article  Google Scholar 

  • Huang C, Retallack GJ, Wang C, Huang Q (2013) Paleoatmospheric pCO2 fluctuations across the Cretaceous–Tertiary boundary recorded from paleosol carbonates in NE China. Palaeogeogr Palaeoclimatol Palaeoecol 385:95–105

    Article  Google Scholar 

  • Ivanov BA, Badukov DD, Yakovlev OI et al (1996) Degassing of sedimentary rocks due to Chicxulub impact: hydrocode and physical simulations. Geol Soc Am Spec Pap 307:125–139

    Google Scholar 

  • Ivany LC, Salawitch RJ (1993) Carbon isotopic evidence for biomass burning at the K–T boundary. Geology 21:487–490

    Article  CAS  Google Scholar 

  • Izett GA (1991) Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez Impact Extinction Hypothesis. J Geophys Res Planet 96:20879–20905

    Article  Google Scholar 

  • Jeffries DS, Lam DCL, Moran MD, Wong I (1999) Effect of SO2 emission controls on critical load exceedances for lakes in southern Canada. Water Sci Technol 39:165–171

    Article  CAS  Google Scholar 

  • Jiang S, Bralower TJ, Patzkowsky ME et al (2010) Geographic controls on nannoplankton extinction across the Cretaceous/Paleogene boundary. Nat Geosci 3:280–285

    Article  CAS  Google Scholar 

  • Jones TP, Lim B (2000) Extraterrestrial impacts and wildfires. Palaeogeogr Palaeoclimatol Palaeoecol 164:57–66

    Article  Google Scholar 

  • Kaiho K, Lamolda MA (1999) Catastrophic extinction of planktonic foraminifera at the Cretaceous–Tertiary boundary evidenced by stable isotopes and foraminiferal abundance at Caravaca, Spain. Geology 27:355–358

    Article  Google Scholar 

  • Kaiho K, Oshima N, Adachi K et al (2017) Global climate change driven by soot at the K–Pg boundary as the cause of the mass extinction. Sci Rep 6:28427

    Article  CAS  Google Scholar 

  • Kawaragi K, Sekine Y, Kadono T et al (2009) Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide. Earth Planet Sci Lett 282:56–64

    Article  CAS  Google Scholar 

  • Keller W, Gunn JM, Yan ND (1992) Evidence of biological recovery in acid stressed lakes near Sudbury, Canada. Environ Pollut 78:79–85

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi R, Vanneste M (2010) A theoretical exercise in the modeling of ground-level ozone resulting from the K–T asteroid impact: its possible link with the extinction selectivity of terrestrial vertebrates. Palaeogeogr Palaeoclimatol Palaeoecol 288:14–23

    Article  Google Scholar 

  • Kourtidis K (2005) Transfer of organic Br and Cl from the biosphere to the atmosphere during the Cretaceous/Tertiary impact: implications for the stratospheric ozone layer. Atmos Chem Phys 5:207–214

    Article  CAS  Google Scholar 

  • Kring DA (1999) Ozone-depleting chlorine and bromine produced by the Chicxulub impact event. Meteorit Planet Sci 34:A67–A68

    Article  Google Scholar 

  • Kring DA, Melosh HJ, Hunten DM (1995) Possible climatic perturbations produced by impacting asteroids and comets. Meteoritics 30:530

    Article  Google Scholar 

  • Kyte FT (1998) A meteorite from the Cretaceous/Tertiary boundary. Nature 396:237–239

    Article  CAS  Google Scholar 

  • Kyte FT, Smit J (1986) Regional variations in spinel compositions: an important key to the Cretaceous/Tertiary event. Geology 14:485–487

    Article  CAS  Google Scholar 

  • Lewis J, Watkins GH, Hartman H, Prinn R (1982) Chemical consequences of major impact events on Earth. Geol Soc Am Spec Pap 190:215–221

    CAS  Google Scholar 

  • Lodders K, Fegley B Jr (1998) The planetary scientist’s companion. Oxford University Press, New York, p 371

    Google Scholar 

  • López-Ramos E (1975) Geological summary of Yucatán Peninsula. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 3 The Gulf of Mexico and the Caribbean. Plenum Press, New York, pp 257–282

    Google Scholar 

  • Macdougall JD (1988) Seawater strontium isotopes, acid rain, and the Cretaceous–Tertiary boundary. Science 239:485–487

    Article  CAS  PubMed  Google Scholar 

  • MacLeod KG, Huber BT, Fullagar PD (2001) Evidence for a small (~0.000030) but resolvable increase in seawater 87Sr/86Sr ratios across the Cretaceous–Tertiary boundary. Geology 29:303–306

    Article  CAS  Google Scholar 

  • Marshall JD (1992) Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation. Geol Mag 129:143–160

    Article  CAS  Google Scholar 

  • Maruoka T, Koeberl C (2003) Acid-neutralizing scenario after the K–T impact event. Geology 31:489–492

    Article  CAS  Google Scholar 

  • Maruoka T, Koeberl C, Newton J et al (2002) Sulfur isotopic compositions across terrestrial Cretaceous–Tertiary (K–T) boundary successions. Geol Soc Am Spec Pap 356:337–344

    Google Scholar 

  • Maruoka T, Koeberl C, Bohor BF (2007) Carbon isotopic compositions of organic matter across continental Cretaceous–Tertiary (K–T) boundary sections: implications for paleoenvironment after the K–T impact event. Earth Planet Sci Lett 253:226–238

    Article  CAS  Google Scholar 

  • McHone JF, Nieman RA, Lewis CF, Yates AM (1989) Stishovite at the Cretaceous–Tertiary boundary, Raton, New Mexico. Science 243:1182–1184

    Article  CAS  PubMed  Google Scholar 

  • Melosh HJ, Schneider NM, Zahnle K, Latham D (1990) Ignition of global wildfires at the Cretaceous/Tertiary boundary. Nature 343:251–254

    Article  CAS  PubMed  Google Scholar 

  • Morgan J, Artemieva N, Goldin T (2013) Revisiting wildfires at the K–Pg boundary. J Geophys Res Biogeosci 118:1508–1520

    Article  Google Scholar 

  • Nilsson J, Grennfelt P (1988) Critical loads for sulfur and nitrogen. Nordic Council of Ministers, Copenhagen

    Google Scholar 

  • Nordt L, Atchley S, Dworkin SI (2002) Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary. Geology 30:703–706

    Article  CAS  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1989) Impact production of CO2 by Cretaceous/Tertiary extinction bolide and the resultant heating of the Earth. Nature 338:247–249

    Article  Google Scholar 

  • Ohno S, Sugita S, Kadono T, Hasegawa S, Igarashi G (2004) Sulfur chemistry in laser-simulated impact vapor clouds: implications for the K/T impact event. Earth Planet Sci Lett 218:347–361

    Article  CAS  Google Scholar 

  • Ohno S, Kadono T, Kurosawa K et al (2014) Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification. Nat Geosci 7:279–282

    Article  CAS  Google Scholar 

  • Palme H, Jones A (2003) Solar system abundances of the elements. In: Davis AM (ed) Treatise on geochemistry 1. Meteorites, comets and planets. Elsevier, Amsterdam, pp 41–61

    Google Scholar 

  • Parkos D, Alexeenko A, Kulakhmetov M et al (2015) NOx production and rainout from Chicxulub impact ejecta and reentry. J Geophys Res Planet 120:2152–2168

    Article  CAS  Google Scholar 

  • Pierazzo E, Kring DA, Melosh HJ (1998) Hydrocode simulation of the Chicxulub impact event and the production of climatically active gases. J Geophys Res 103:28,607–28,625

    Article  CAS  Google Scholar 

  • Pierazzo E, Hahmann AN, Sloan LC (2003) Chicxulub and climate: effects of stratospheric injections of impact-produced S-bearing gases. Astrobiology 3:99–118

    Article  CAS  PubMed  Google Scholar 

  • Pope KO (2002) Impact dust not the cause of the Cretaceous–Tertiary mass extinction. Geology 30:99–102

    Article  Google Scholar 

  • Preisinger A, Aslanian S, Brandstätter F et al (2002) Cretaceous–Tertiary profile, rhythmic deposition, and geomagnetic polarity reversal of marine sediments near Bjala, Bulgaria. Geol Soc Am Spec Pap 356:213–229

    Google Scholar 

  • Prinn RG, Fegley B Jr (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous–Tertiary boundary. Earth Planet Sci Lett 83:1–15

    Article  CAS  Google Scholar 

  • Retallack GJ (1996) Acid trauma at the Cretaceous–Tertiary boundary in eastern Montana. GSA Today 6:1–7

    Google Scholar 

  • Retallack GJ (2001) A 300 million year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290

    Article  CAS  PubMed  Google Scholar 

  • Retallack GJ (2009) Refining a pedogenic–carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike. Palaeogeogr Palaeoclimatol Palaeoecol 281:57–65

    Article  Google Scholar 

  • Robertson DS, McKenna MC, Toon OB et al (2004) Comment on fireball passes and nothing burns—the role of thermal radiation in the Cretaceous–Tertiary event: evidence from the charcoal record of North America. Geology 32:e50

    Article  Google Scholar 

  • Robertson DS, Lewis WM, Sheehan PM, Toon OB (2013) K-Pg extinction: reevaluation of the heat-fire hypothesis. J Geophys Res Biogeosci 118:329–336

    Article  Google Scholar 

  • Robinson N, Ravizza G, Coccioni R et al (2009) A high-resolution marine 187Os/188Os record for the late Maastrichtian: distinguishing the chemical fingerprints of Deccan volcanism and the KP impact event. Earth Planet Sci Lett 281:159–168

    Article  CAS  Google Scholar 

  • Royer DL (2010) Fossil soils constrain ancient climate sensitivity. Proc Natl Acad Sci U S A 107:517–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on Geochemistry 3. The crust. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  • Schoene B, Samperton KM, Eddy MP et al (2015) U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction. Science 347:182–184

    Article  CAS  PubMed  Google Scholar 

  • Schouten S, Hopmans EC, Schefuss E et al (2002) Distributional variations in marine crenarchaeotal membrane lipids: a new organic proxy for reconstructing ancient sea water temperatures? Earth Planet Sci Lett 204:265–274

    Article  CAS  Google Scholar 

  • Schulte P, Deutsch A, Salge T et al (2009) A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous–Paleogene (K–Pg) boundary, Demerara Rise, western Atlantic. Geochim Cosmochim Acta 73:1180–1204

    Article  CAS  Google Scholar 

  • Schulte P, Alegret L, Arenillas I et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327:1214–1218

    Article  CAS  PubMed  Google Scholar 

  • Sepkoski JJ Jr (1996) Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser OH (ed) Global events and event stratigraphy. Springer, Berlin, pp 35–51

    Chapter  Google Scholar 

  • Shackleton NJ, Hall MA (1984) Carbon isotope data from Leg 74 sediments. DSDP Init Rep 74:613–619

    CAS  Google Scholar 

  • Sheehan PM, Fastovsky DE (1992) Major extinctions of land-dwelling vertebrates at the Cretaceous–Tertiary boundary, eastern Montana. Geology 20:556–560

    Article  Google Scholar 

  • Sigurdsson H, D’Hondt S, Arthur MA et al (1991) Glass from the Cretaceous/Tertiary boundary in Haiti. Nature 349:482–487

    Article  CAS  Google Scholar 

  • Sigurdsson H, D’Hondt S, Carey S (1992) The impact of the Cretaceous/Tertiary bolide on evaporite terrane and generation of major sulfuric acid aerosol. Earth Planet Sci Lett 109:543–559

    Article  CAS  Google Scholar 

  • Stanley SM (2016) Estimates of the magnitudes of major marine mass extinctions in earth history. Proc Natl Acad Sci U S A 113:E6325–E6334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinthorsdottir M, Vajda V, Pole M (2016) Global trends of pCO2 across the Cretaceous–Paleogene boundary supported by the first Southern Hemisphere stomatal proxy-based pCO2 reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 464:143–152

    Article  Google Scholar 

  • Stinnesbeck W, Keller G, Adatte T et al (2004) Yaxcopoil-1 and the Chicxulub impact. Int J Earth Sci 93:1042–1065

    Article  CAS  Google Scholar 

  • Swisher CC III, Grajales-Nishimura JM, Montanari A et al (1992) Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous–Tertiary boundary tektites. Science 257:954–958

    Article  CAS  PubMed  Google Scholar 

  • Takata T, Ahrens TJ (1994) Numerical simulation of impact cratering at Chicxulub and the possible causes of KT catastrophe. Lunar Planet Inst Contr 825:125–126

    Google Scholar 

  • Toon OB, Pollack JB, Ackerman TP et al (1982) Evolution of an impact-generated dust cloud and its effects on the atmosphere. Geol Soc Am Spec Pap 190:187–200

    Google Scholar 

  • Toon OB, Zahnle K, Morrison D et al (1997) Environmental perturbations caused by the impacts of asteroids and comets. Rev Geophys 35:41–78

    Article  CAS  Google Scholar 

  • Tyrrell T, Merico A, McKay A, Ian D (2015) Severity of ocean acidification following the end-Cretaceous asteroid impact. Proc Natl Acad Sci U S A 112:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urrutia-Fucugauchi J, Camargo-Zanoguera A, Pérez-Cruz L, Pérez-Cruz G (2011) The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico. Geofis Int 50:99–127

    Google Scholar 

  • Vellekoop J, Sluijs A, Smit J et al (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci U S A 111:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vellekoop J, Esmeray-Senlet S, Miller KG et al (2016) Evidence for Cretaceous–Paleogene boundary bolide “impact winter” conditions from New Jersey, USA. Geology 44:619–622

    Article  Google Scholar 

  • Ward WC, Keller G, Stinnesbeck W, Adatte T (1995) Yucatán subsurface stratigraphy: implications and constraints for the Chicxulub impact. Geology 23:873–876

    Article  Google Scholar 

  • Wolbach WS, Lewis RS, Anders E (1985) Cretaceous extinctions: evidence for wildfires and search for meteoritic material. Science 230:167–170

    Article  CAS  Google Scholar 

  • Wolbach WS, Gilmour I, Anders E (1990) Major wildfires at the Cretaceous/Tertiary boundary. Geol Soc Am Spec Pap 247:391–400

    Google Scholar 

  • Zachos JC, Arthur MA, Thunell RC et al (1985) Stable isotope and trace element geochemistry of carbonate sediments across the Cretaceous/Tertiary boundary at Deep Sea Drilling Project Hole 577, Leg 86. DSDP Init Rep 86:513–532

    CAS  Google Scholar 

  • Zahnle KJ (1990) Atmospheric chemistry by large impacts. Geol Soc Am Spec Pap 247:271–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruyuki Maruoka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maruoka, T. (2019). Mass Extinction at the Cretaceous–Paleogene (K–Pg) Boundary. In: Yamagishi, A., Kakegawa, T., Usui, T. (eds) Astrobiology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3639-3_19

Download citation

Publish with us

Policies and ethics