Skip to main content

Immunosenescence, Inflammaging, and Their Implications for Cancer and Anemia

Abstract

Aging or senescence is a complex process that causes the progressive degeneration of physiological capacity, resulting in a greater probability of death. Senescence affects all cells and tissues of organism, including those of the immune system. The immune system of older people declines with age, and this phenomenon is known as immunosenescence. Immunosenescence results in greater susceptibility to pathology of various age-related disorders, a higher incidence of infections, neoplasia and autoimmune diseases, impaired response, susceptibility to chronic diseases, and weak response to vaccination. Aging affects cells of both innate and adaptive immunity. The cells involved in innate immunity show altered functions. Neutrophils, monocytes, or macrophages show reduced phagocytic ability and impaired superoxide production. Macrophages show reduced levels of MHC class II complexes. Dendritic cells show impaired migration and phagocytic capability and natural killer cells, a reduction in cytotoxicity. Mast cell number increases with age, and degranulation changes contribute to inflammatory responses in elderly. Aging characterized by a chronic, low-grade inflammation is termed as “inflammaging.” Inflammaging is a highly significant risk factor for morbidity and mortality in the elderly people. This phase of inflammation is associated with many chronic human diseases, including allergy, arthritis, atherosclerosis, cancer, and autoimmune diseases. Aging can cause dysregulation of the adaptive immune system due to diminished number of naïve B and T cells but a reciprocal rise in memory B and T cells. This results in decrease in T- and B-cell diversity along with low antibody affinity and rise of autoreactive antibodies causing overall weakening of the immune system. An increase in inflammatory markers with age, along with decreased efficacy of immunological surveillance, a process where neoplastic cells are detected and destroyed, increases the risk of cancer with age. Anemia of inflammation (AI), also referred as anemia of chronic disease (ACD), is the most common cause of anemia in the elderly. Oxidative stress may cause erythrocyte damage and thus results into AI. The interplay of inflammation and oxidative stress is described in a number of age-related disorders, such as anemia, cancer, angiogenesis, and vascular diseases.

Keywords

  • Immune system
  • Immunosenescence
  • Inflammaging
  • Cancer
  • Anemia

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3585-3_14
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-3585-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5

References

  1. Kirkwood TB (2011) Growing up in ageing. Clin Med (Lond) 11(2):169–170

    CAS  CrossRef  Google Scholar 

  2. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    PubMed  CrossRef  Google Scholar 

  3. Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120(4):435–446

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  4. Yoshikawa T, Naito Y (2000) The role of neutrophils and inflammation in gastric mucosal injury. Free Radic Res 33(6):785–794

    CAS  PubMed  CrossRef  Google Scholar 

  5. Baylis D et al (2013) Understanding how we age: insights into inflammaging. Longev Healthspan 2(1):8

    PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Rohrig G (2016) Anemia in the frail, elderly patient. Clin Interv Aging 11:319–326

    PubMed  PubMed Central  CrossRef  Google Scholar 

  7. Franceschi C et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254

    CAS  CrossRef  PubMed  Google Scholar 

  8. Boots AM et al (2013) The influence of ageing on the development and management of rheumatoid arthritis. Nat Rev Rheumatol 9(10):604–613

    CAS  PubMed  CrossRef  Google Scholar 

  9. Theurl I et al (2011) Pharmacologic inhibition of hepcidin expression reverses anemia of chronic inflammation in rats. Blood 118(18):4977–4984

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  10. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  11. Shayganni E et al (2016) Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine 23(11):1119–1126

    PubMed  CrossRef  Google Scholar 

  12. Kuek A, Hazleman BL, Ostor AJ (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 83(978):251–260

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Deleidi M, Jaggle M, Rubino G (2015) Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci 9:172

    PubMed  PubMed Central  CrossRef  Google Scholar 

  14. Ginaldi L, Di Benedetto MC, De Martinis M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2:14

    PubMed  PubMed Central  CrossRef  Google Scholar 

  15. Frame B, Nixon RK (1968) Bone-marrow mast cells in osteoporosis of aging. N Engl J Med 279(12):626–630

    CAS  PubMed  CrossRef  Google Scholar 

  16. Prattichizzo F et al (2016) “Inflammaging” as a druggable target: a senescence-associated secretory phenotype-centered view of type 2 diabetes. Oxidative Med Cell Longev 2016:1810327

    CrossRef  CAS  Google Scholar 

  17. Salminen A, Kaarniranta K, Kauppinen A (2012) Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging-US 4(3):166–175

    CAS  CrossRef  Google Scholar 

  18. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Patents Inflamm Allergy Drug Discov 3(1):73–80

    CAS  CrossRef  Google Scholar 

  19. Fibach E, Rachmilewitz E (2008) The role of oxidative stress in hemolytic anemia. Curr Mol Med 8(7):609–619

    CAS  PubMed  CrossRef  Google Scholar 

  20. Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  21. Kim YW, West XZ, Byzova TV (2013) Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl) 91(3):323–328

    CAS  CrossRef  Google Scholar 

  22. Tomlinson S (1993) Complement defense mechanisms. Curr Opin Immunol 5(1):83–89

    CAS  PubMed  CrossRef  Google Scholar 

  23. Delves PJ, Roitt IM (2000) The immune system. First of two parts. N Engl J Med 343(1):37–49

    CAS  PubMed  CrossRef  Google Scholar 

  24. Delves PJ, Roitt IM (2000) The immune system. Second of two parts. N Engl J Med 343(2):108–117

    CAS  PubMed  CrossRef  Google Scholar 

  25. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    CAS  PubMed  CrossRef  Google Scholar 

  26. Mariani E et al (2001) Different IL-8 production by T and NK lymphocytes in elderly subjects. Mech Ageing Dev 122(13):1383–1395

    CAS  PubMed  CrossRef  Google Scholar 

  27. Ogata K et al (1997) Natural killer cells in the late decades of human life. Clin Immunol Immunopathol 84(3):269–275

    CAS  PubMed  CrossRef  Google Scholar 

  28. Gayoso I et al (2011) Immunosenescence of human natural killer cells. J Innate Immun 3(4):337–343

    CAS  PubMed  CrossRef  Google Scholar 

  29. Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18(16):1613–1620

    CAS  PubMed  CrossRef  Google Scholar 

  30. Lutz CT et al (2005) Reciprocal age related change in natural killer cell receptors for MHC class I. Mech Ageing Dev 126(6–7):722–731

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  31. Murasko DM, Jiang J (2005) Response of aged mice to primary virus infections. Immunol Rev 205:285–296

    CAS  PubMed  CrossRef  Google Scholar 

  32. Bottino C, Moretta L, Moretta A (2006) NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 298:175–182

    CAS  PubMed  Google Scholar 

  33. Bruunsgaard H et al (2001) Decreased natural killer cell activity is associated with atherosclerosis in elderly humans. Exp Gerontol 37(1):127–136

    CAS  PubMed  CrossRef  Google Scholar 

  34. Bruunsgaard H, Pedersen M, Pedersen BK (2001) Aging and proinflammatory cytokines. Curr Opin Hematol 8(3):131–136

    CAS  PubMed  CrossRef  Google Scholar 

  35. Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148(1–2):46–57

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  36. Ziegler DA et al (2010) Cognition in healthy aging is related to regional white matter integrity, but not cortical thickness. Neurobiol Aging 31(11):1912–1926

    PubMed  CrossRef  Google Scholar 

  37. Zimmermann HW, Trautwein C, Tacke F (2012) Functional role of monocytes and macrophages for the inflammatory response in acute liver injury. Front Physiol 3:56

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  38. Ancuta P et al (2009) Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16 monocyte subsets. BMC Genomics 10:403

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  39. Maes M (1999) Major depression and activation of the inflammatory response system. Adv Exp Med Biol 461:25–46

    CAS  PubMed  CrossRef  Google Scholar 

  40. Krabbe H (2001) [Experiences with the conversion of legal regulations in practice]. Dtsch Tierarztl Wochenschr 108(8):353–357

    Google Scholar 

  41. Nyugen J et al (2010) Impaired functions of peripheral blood monocyte subpopulations in aged humans. J Clin Immunol 30(6):806–813

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  42. Merino A et al (2011) Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity. J Immunol 186(3):1809–1815

    PubMed  CrossRef  CAS  Google Scholar 

  43. Hearps AC et al (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11(5):867–875

    CAS  CrossRef  PubMed  Google Scholar 

  44. Herrero C et al (2002) Immunosenescence of macrophages: reduced MHC class II gene expression. Exp Gerontol 37(2–3):389–394

    CAS  PubMed  CrossRef  Google Scholar 

  45. Zissel G et al (1999) Pharmacological modulation of the IFNgamma-induced accessory function of alveolar macrophages and peripheral blood monocytes. Inflamm Res 48(12):662–668

    CAS  PubMed  CrossRef  Google Scholar 

  46. Zissel G, Schlaak M, Muller-Quernheim J (1999) Age-related decrease in accessory cell function of human alveolar macrophages. J Investig Med 47(1):51–56

    CAS  PubMed  Google Scholar 

  47. Roubenoff R et al (1998) Monocyte cytokine production in an elderly population: effect of age and inflammation. J Gerontol A Biol Sci Med Sci 53(1):M20–M26

    CAS  PubMed  CrossRef  Google Scholar 

  48. Shaw AC et al (2011) Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 10(3):346–353

    CAS  PubMed  CrossRef  Google Scholar 

  49. Uyemura K, Castle SC, Makinodan T (2002) The frail elderly: role of dendritic cells in the susceptibility of infection. Mech Ageing Dev 123(8):955–962

    CAS  PubMed  CrossRef  Google Scholar 

  50. Frasca D et al (2003) Decreased E12 and/or E47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J Immunol 170(2):719–726

    CAS  PubMed  CrossRef  Google Scholar 

  51. Frasca D et al (2003) Effects of aging on proliferation and E47 transcription factor activity induced by different stimuli in murine splenic B cells. Mech Ageing Dev 124(4):361–369

    CAS  PubMed  CrossRef  Google Scholar 

  52. Signer RA et al (2008) Aging and cancer resistance in lymphoid progenitors are linked processes conferred by p16Ink4a and Arf. Genes Dev 22(22):3115–3120

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  53. Plowden J et al (2004) Innate immunity in aging: impact on macrophage function. Aging Cell 3(4):161–167

    CAS  PubMed  CrossRef  Google Scholar 

  54. Boehmer ED et al (2005) Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Ageing Dev 126(12):1305–1313

    CAS  PubMed  CrossRef  Google Scholar 

  55. Gomez JA et al (2005) X box-like sequences in the MHC class II region maintain regulatory function. J Immunol 175(2):1030–1040

    CAS  PubMed  CrossRef  Google Scholar 

  56. Fulop T et al (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3(4):217–226

    CAS  PubMed  CrossRef  Google Scholar 

  57. Effros RB (1997) Loss of CD28 expression on T lymphocytes: a marker of replicative senescence. Dev Comp Immunol 21(6):471–478

    CAS  PubMed  CrossRef  Google Scholar 

  58. Weng CY et al (2009) MAP kinase pathway is involved in IGF-1-stimulated proliferation of human retinal pigment epithelial cells (hRPE). Curr Eye Res 34(10):867–876

    CAS  PubMed  CrossRef  Google Scholar 

  59. Larbi A, Blin D, Cyteval C (2011) [Hip and pelvic injuries in the elderly]. J Radiol 92(6):567–580

    Google Scholar 

  60. Petrov M (2013) Nutrition, inflammation, and acute pancreatitis. ISRN Inflamm 2013:341410

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  61. Kelsall BL, Strober W (1996) The role of dendritic cells in antigen processing in the Peyer’s patch. Ann N Y Acad Sci 778:47–54

    CAS  PubMed  CrossRef  Google Scholar 

  62. Gunin AG et al (2011) Age-related changes in proliferation, the numbers of mast cells, eosinophils, and cd45-positive cells in human dermis. J Gerontol A Biol Sci Med Sci 66(4):385–392

    PubMed  CrossRef  CAS  Google Scholar 

  63. Burnet M (1959) Auto-immune disease. I. Modern immunological concepts. Br Med J 2(5153):645–650

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  64. Frasca D et al (2016) The generation of memory B cells is maintained, but the antibody response is not, in the elderly after repeated influenza immunizations. Vaccine 34(25):2834–2840

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  65. Aspinall R, Andrew D (2000) Immunosenescence: potential causes and strategies for reversal. Biochem Soc Trans 28(2):250–254

    CAS  PubMed  CrossRef  Google Scholar 

  66. Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5(2):133–139

    CAS  PubMed  CrossRef  Google Scholar 

  67. Aspinall R, Andrew D (2000) Thymic involution in aging. J Clin Immunol 20(4):250–256

    CAS  PubMed  CrossRef  Google Scholar 

  68. Massoud AH et al (2014) Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells. J Allergy Clin Immunol 133(3):853–63 e5

    CAS  PubMed  CrossRef  Google Scholar 

  69. Steinmann GG (1986) Changes in the human thymus during aging. Curr Top Pathol 75:43–88

    CAS  PubMed  CrossRef  Google Scholar 

  70. Manley NR et al (2011) Structure and function of the thymic microenvironment. Front Biosci (Landmark Ed) 16:2461–2477

    CAS  CrossRef  Google Scholar 

  71. Beerman I et al (2010) Stem cells and the aging hematopoietic system. Curr Opin Immunol 22(4):500–506

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Goronzy JJ et al (2012) Signaling pathways in aged T cells – a reflection of T cell differentiation, cell senescence and host environment. Semin Immunol 24(5):365–372

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  73. Clambey ET et al (2008) Identification of two major types of age-associated CD8 clonal expansions with highly divergent properties. Proc Natl Acad Sci USA 105(35):12997–13002

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  74. Strindhall J et al (2007) No Immune Risk Profile among individuals who reach 100 years of age: findings from the Swedish NONA immune longitudinal study. Exp Gerontol 42(8):753–761

    CAS  PubMed  CrossRef  Google Scholar 

  75. Zediak VP, Maillard I, Bhandoola A (2007) Multiple prethymic defects underlie age-related loss of T progenitor competence. Blood 110(4):1161–1167

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  76. Dykstra B et al (2011) Clonal analysis reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 208(13):2691–2703

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  77. Frasca D, Blomberg BB (2009) Effects of aging on B cell function. Curr Opin Immunol 21(4):425–430

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  78. Cancro MP et al (2009) B cells and aging: molecules and mechanisms. Trends Immunol 30(7):313–318

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  79. McElhaney JE et al (2012) The unmet need in the elderly: how immunosenescence, CMV infection, co-morbidities and frailty are a challenge for the development of more effective influenza vaccines. Vaccine 30(12):2060–2067

    PubMed  PubMed Central  CrossRef  Google Scholar 

  80. Miller JP, Cancro MP (2007) B cells and aging: balancing the homeostatic equation. Exp Gerontol 42(5):396–399

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  81. Ryan GB, Majno G (1977) Acute inflammation. A review. Am J Pathol 86(1):183–276

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Weiss U (2008) Inflammation. Nature 454(7203):427

    CAS  PubMed  CrossRef  Google Scholar 

  83. de Zoete MR et al (2014) Inflammasomes. Cold Spring Harb Perspect Biol 6(12):a016287

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  84. McIntire CR, Yeretssian G, Saleh M (2009) Inflammasomes in infection and inflammation. Apoptosis 14(4):522–535

    CAS  PubMed  CrossRef  Google Scholar 

  85. Theoharides TC et al (2007) Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev 217:65–78

    CAS  PubMed  CrossRef  Google Scholar 

  86. Bienenstock J et al (1987) Mast cell involvement in various inflammatory processes. Am Rev Respir Dis 135(6 Pt 2):S5–S8

    CAS  PubMed  Google Scholar 

  87. Gabay C (2006) Interleukin-6 and chronic inflammation. Arthritis Res Ther 8(Suppl 2):S3

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  88. Tang C et al (2012) Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 135(2):112–124

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  89. Sternberg EM (2001) Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol 169(3):429–435

    CAS  PubMed  CrossRef  Google Scholar 

  90. Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192(4):547–556

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  91. Dall’Olio F et al (2013) N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 12(2):685–698

    PubMed  CrossRef  CAS  Google Scholar 

  92. Biagi E et al (2011) The aging gut microbiota: new perspectives. Ageing Res Rev 10(4):428–429

    PubMed  CrossRef  Google Scholar 

  93. Franceschi C, Bonafe M, Valensin S (2000) Human immunosenescence: the prevailing of innate immunity, the failing of clonotypic immunity, and the filling of immunological space. Vaccine 18(16):1717–1720

    CAS  PubMed  CrossRef  Google Scholar 

  94. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9

    CrossRef  PubMed  Google Scholar 

  95. Williams CMM, Galli SJ (2000) Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J Exp Med 192(3):455–462

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  96. Bischoff SC (2007) Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat Rev Immunol 7(2):93–104

    CAS  PubMed  CrossRef  Google Scholar 

  97. Caughey GH (2007) Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev 217:141–154

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  98. Crivellato E et al (2004) The mast cell: an active participant or an innocent bystander? Histol Histopathol 19(1):259–270

    CAS  PubMed  Google Scholar 

  99. Nguyen M, Pace AJ, Koller BH (2005) Age-induced reprogramming of mast cell degranulation. J Immunol 175(9):5701–5707

    CAS  PubMed  CrossRef  Google Scholar 

  100. Petrov VV et al (2013) [Age-related changes in mast cells and eosinophils of human dermis]. Ontogenez 44(3):179–185

    CAS  PubMed  Google Scholar 

  101. Kelsall MA (1966) Aging on mast cells and plasmacytes in the brain of hamsters. Anat Rec 154(4):727–739

    CAS  PubMed  CrossRef  Google Scholar 

  102. Yang-lin Hua WG, Li H-y, Tang J (2016) The role of the mast cell in skin aging. J Dermatol Res Ther 2(5):035

    Google Scholar 

  103. Grizzi F et al (2013) Mast cells and the liver aging process. Immun Ageing 10(1):9

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  104. Abshire TC (1996) The anemia of inflammation. A common cause of childhood anemia. Pediatr Clin North Am 43(3):623–637

    CAS  PubMed  CrossRef  Google Scholar 

  105. Roy CN (2010) Anemia of inflammation. Hematology Am Soc Hematol Educ Program 2010:276–280

    PubMed  CrossRef  Google Scholar 

  106. Saxena RK, Khandelwal S (2009) Aging and destruction of blood erythrocytes in mice. Curr Sci 97(4):500–507

    CAS  Google Scholar 

  107. Fraenkel PG (2017) Anemia of inflammation: a review. Med Clin North Am 101(2):285–296

    PubMed  CrossRef  Google Scholar 

  108. Roy A, Sil PC (2012) Tertiary butyl hydroperoxide induced oxidative damage in mice erythrocytes: Protection by taurine. Pathophysiology 19(2):137–148

    CAS  PubMed  CrossRef  Google Scholar 

  109. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  110. Artz AS et al (2014) Unexplained anaemia in the elderly is characterised by features of low grade inflammation. Br J Haematol 167(2):286–289

    PubMed  PubMed Central  CrossRef  Google Scholar 

  111. Akohoue SA et al (2007) Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anemia. Pediatr Res 61(2):233–238

    CAS  PubMed  CrossRef  Google Scholar 

  112. Pandey KB, Rizvi SI (2011) Biomarkers of oxidative stress in red blood cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 155(2):131–136

    CAS  PubMed  CrossRef  Google Scholar 

  113. Puri N, Roche PA (2008) Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc Natl Acad Sci USA 105(7):2580–2585

    CAS  PubMed  CrossRef  PubMed Central  Google Scholar 

  114. Malaviya R, Abraham SN (2001) Mast cell modulation of immune responses to bacteria. Immunol Rev 179:16–24

    CAS  PubMed  CrossRef  Google Scholar 

  115. Madewell BR, Munn RJ, Phillips LP (1987) Endocytosis of erythrocytes in vivo and particulate substances in vitro by feline neoplastic mast cells. Can J Vet Res 51(4):517–520

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Spicer SS, Simson JA, Farrington JE (1975) Mast cell phagocytosis of red blood cells. Am J Pathol 80(3):481–498

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Naqvi N et al (2017) Role of Mast Cells in clearance of Leishmania through extracellular trap formation. Sci Rep 7(1):13240

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  118. Sharma P, Puri N (2018) A new role for mast cells as scavengers for clearance of erythrocytes damaged due to oxidative stress. Immunol Lett 199:23–35

    CAS  PubMed  CrossRef  Google Scholar 

  119. Ultmann JE et al (1964) Clinical, cytologic, and biochemical studies in systemic mast cell disease. Ann Intern Med 61:326–333

    CAS  PubMed  CrossRef  Google Scholar 

  120. Lim KH et al (2009) Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. Blood 113(23):5727–5736

    CAS  PubMed  CrossRef  Google Scholar 

  121. Vincent L et al (2013) Mast cell activation contributes to sickle cell pathobiology and pain in mice. Blood 122(11):1853–1862

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  122. Kilari D, Mohile SG (2012) Management of cancer in the older adult. Clin Geriatr Med 28(1):33–49

    PubMed  CrossRef  Google Scholar 

  123. Zbar AP, Gravitz A, Audisio RA (2012) Principles of surgical oncology in the elderly. Clin Geriatr Med 28(1):51–71

    PubMed  CrossRef  Google Scholar 

  124. DePinho RA (2000) The age of cancer. Nature 408(6809):248–254

    CAS  PubMed  CrossRef  Google Scholar 

  125. Hoffe S, Balducci L (2012) Cancer and age: general considerations. Clin Geriatr Med 28(1):1–18

    PubMed  CrossRef  Google Scholar 

  126. Balducci L (2005) Epidemiology of cancer and aging. J Oncol Manag 14(2):47–50

    PubMed  Google Scholar 

  127. Balducci L (2005) Prevention of cancer in the older person. Cancer J 11(6):442–448

    PubMed  CrossRef  Google Scholar 

  128. Balducci L (2005) The nexus of cancer and age. Discov Med 5(30):516–519

    PubMed  Google Scholar 

  129. Balducci L, Aapro M (2005) Epidemiology of cancer and aging. Cancer Treat Res 124:1–15

    PubMed  CrossRef  Google Scholar 

  130. Balducci L, Ershler WB (2005) Cancer and ageing: a nexus at several levels. Nat Rev Cancer 5(8):655–662

    CAS  PubMed  CrossRef  Google Scholar 

  131. Pavlidis N, Stanta G, Audisio RA (2012) Cancer prevalence and mortality in centenarians: a systematic review. Crit Rev Oncol Hematol 83(1):145–152

    PubMed  CrossRef  Google Scholar 

  132. Baade PD et al (2012) Factors associated with diagnostic and treatment intervals for prostate cancer in Queensland, Australia: a large cohort study. Cancer Causes Control 23(4):625–634

    PubMed  CrossRef  Google Scholar 

  133. Baade PD et al (2012) Estimating the future burden of cancers preventable by better diet and physical activity in Australia. Med J Aust 196(5):337–340

    PubMed  CrossRef  Google Scholar 

  134. Pavlidis N et al (2012) Long-term survivors among patients with cancer of unknown primary. Crit Rev Oncol Hematol 84(1):85–92

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niti Puri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Paudel, S., Sharma, P., Puri, N. (2019). Immunosenescence, Inflammaging, and Their Implications for Cancer and Anemia. In: Rath, P. (eds) Models, Molecules and Mechanisms in Biogerontology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3585-3_14

Download citation