Skip to main content

Metal-Organic Frameworks

  • Chapter
  • First Online:
Nanoporous Materials for Gas Storage

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Metal-organic frameworks (MOFs) are a relatively young class of porous materials. They consist of inorganic complexes as nodes connected by multifunctional organic molecules (linkers). Highly porous MOFs reach records in terms of storage capacities for gases and vapors. The main characteristics of MOFs responsible for the success of them as adsorbents are crystallinity, modular composition, as well as exceptionally high specific surface areas and pore volumes. The chapter outlines structural building principles of MOFs and describes a few prototypical structures with value for gas storage. Also important characteristics such as pore size distribution and inner surface functionality are controllable in MOFs by the chemistry of the building blocks. As a consequence, MOF materials provide a platform to precisely study the gas adsorption from theoretical and experimental point of view and also to reach ideal material characteristics for the adsorption of the molecules of interest. Moreover, the intrinsic flexibility of the MOFs, leading to structural transformations and unique stepwise adsorption behavior not observed for rigid porous materials, opens new horizons for the design of effective “smart” adsorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Batten SR et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85:1715–1724. https://doi.org/10.1351/pac-rec-12-11-20

    Article  Google Scholar 

  2. Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 112:1546. https://doi.org/10.1021/ja00160a038

    Article  Google Scholar 

  3. Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962. https://doi.org/10.1021/ja00197a079

    Article  Google Scholar 

  4. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc Chem Res 34:319–330. https://doi.org/10.1021/ar000034b

    Article  Google Scholar 

  5. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650

    Article  Google Scholar 

  6. O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702. https://doi.org/10.1021/cr200205j

    Article  Google Scholar 

  7. Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal–organic frameworks with Polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114:1343–1370. https://doi.org/10.1021/cr400392k

    Article  Google Scholar 

  8. Inge AK et al (2016) Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J Am Chem Soc 138:1970–1976. https://doi.org/10.1021/jacs.5b12484

    Article  Google Scholar 

  9. Howarth AJ, Li P, Farha OK, O’Keeffe M (2018) Bottom-up design and generation of complex structures: a new twist in reticular chemistry. Cryst Growth Des 18:449–455. https://doi.org/10.1021/acs.cgd.7b01434

    Article  Google Scholar 

  10. Bon V, Senkovska I, Baburin IA, Kaskel S (2013) Zr- and Hf-based metal–organic frameworks: tracking down the polymorphism. Cryst Growth Des 13:1231–1237. https://doi.org/10.1021/cg301691d

    Article  Google Scholar 

  11. Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the Design of Frameworks. Acc Chem Res 38:176–182. https://doi.org/10.1021/ar020022l

    Article  Google Scholar 

  12. Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM (2008) Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal−organic frameworks and Polyhedra. J Am Chem Soc 130:11650–11661. https://doi.org/10.1021/ja803783c

    Article  Google Scholar 

  13. Hyde ST, Delgado Friedrichs O, Ramsden SJ, Robins V (2006) Towards enumeration of crystalline frameworks: the 2D hyperbolic approach. Solid State Sci 8:740–752. https://doi.org/10.1016/j.solidstatesciences.2006.04.001

    Article  Google Scholar 

  14. O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789. https://doi.org/10.1021/ar800124u

    Article  Google Scholar 

  15. Kitagawa S, Munakata M, Tanimura T (1991) Tetranuclear copper(I)-based infinite one-dimentional chain complex. Synthesis and X-Ray crystal structure of {[Cu2(μ-3-methylpyridazine)2(μ-pyrazine)3](ClO4)2}∞. Chem Lett 20:623–626. https://doi.org/10.1246/cl.1991.623

    Article  Google Scholar 

  16. Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M=Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727. https://doi.org/10.1002/anie.199717251

    Article  Google Scholar 

  17. Kitagawa S, Kitaura R, S-i N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375. https://doi.org/10.1002/anie.200300610

    Article  Google Scholar 

  18. Yaghi OM, Li G, Groy TL (1995) Conversion of hydrogen-bonded manganese(II) and zinc(II) squarate (C4O42-) molecules, chains and sheets to three-dimensional cage networks. Dalton Trans:727–732. https://doi.org/10.1039/DT9950000727

  19. Yaghi OM, Jernigan R, Li H, Davis EC, Groy TL (1997) Construction of a new open-framework solid from 1,3,5-cyclohexanetricarboxylate and zinc(II) building blocks. Dalton Trans:2383–2384. https://doi.org/10.1039/A702287E

  20. Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474–484. https://doi.org/10.1021/ar970151f

    Article  Google Scholar 

  21. Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177. https://doi.org/10.1021/ja076877g

    Article  Google Scholar 

  22. Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically Functionalizable Nanoporous material Cu3(TMA)2(H2O)3. Science 283:1148–1150. https://doi.org/10.1126/science.283.5405.1148

    Article  Google Scholar 

  23. Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894. https://doi.org/10.1021/ja4045289

    Article  Google Scholar 

  24. Senkovska I, Kaskel S (2008) High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater 112:108–115. https://doi.org/10.1016/j.micromeso.2007.09.016

    Article  Google Scholar 

  25. Cheetham AK, Férey G, Loiseau T (1999) Open-framework inorganic materials. Angew Chem Int Ed 38:3268–3292. https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U

    Article  Google Scholar 

  26. Barthelet K, Riou D, Férey G (2001) Hydrothermal synthesis and structure determination of Ag3(VVO2){O3P-CH2-PO3} or MIL-42: a new vanadium(V) methylendiphosphonate inserting silver cations. Solid State Sci 3:203–209. https://doi.org/10.1016/S1293-2558(00)01132-8

    Article  Google Scholar 

  27. Barthelet K, Marrot J, Riou D, Férey G (2002) A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew Chem Int Ed 41:281–284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y

    Article  Google Scholar 

  28. Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S (2009) A mesoporous metal-organic framework. Angew Chem Int Ed 48:9954–9957. https://doi.org/10.1002/anie.200904599

    Article  Google Scholar 

  29. Grünker R et al (2014) A new metal-organic framework with ultra-high surface area. Chem Commun 50:3450–3452. https://doi.org/10.1039/c4cc00113c

    Article  Google Scholar 

  30. Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51:1046–1049. https://doi.org/10.1039/c4cc07920e

    Article  Google Scholar 

  31. Furukawa H et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428. https://doi.org/10.1126/science.1192160

    Article  Google Scholar 

  32. Farha OK et al (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948. https://doi.org/10.1038/nchem.834

    Article  Google Scholar 

  33. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Cryst B72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  Google Scholar 

  34. Oien-Odegaard S, Shearer GC, Wragg DS, Lillerud KP (2017) Pitfalls in metal-organic framework crystallography: towards more accurate crystal structures. Chem Soc Rev 46:4867–4876. https://doi.org/10.1039/C6CS00533K

    Article  Google Scholar 

  35. Gandara F, Bennett TD (2014) Crystallography of metal-organic frameworks. IUCrJ 1:563–570. https://doi.org/10.1107/S2052252514020351

    Article  Google Scholar 

  36. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. https://doi.org/10.1126/science.1116275

    Article  Google Scholar 

  37. Sarkisov L, Harrison A (2011) Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Sim 37:1248–1257. https://doi.org/10.1080/08927022.2011.592832

    Article  Google Scholar 

  38. Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M (2012) Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater 149:134–141. https://doi.org/10.1016/j.micromeso.2011.08.020

    Article  Google Scholar 

  39. Chempath S, Düren T, Sarkisov L, Snurr RQ (2013) Experiences with the publicly available multipurpose simulation code, Music. Mol Sim 39:1223–1232. https://doi.org/10.1080/08927022.2013.819103

    Article  Google Scholar 

  40. Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Sim 42:81–101. https://doi.org/10.1080/08927022.2015.1010082

    Article  Google Scholar 

  41. Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 1:15018. https://doi.org/10.1038/natrevmats.2015.18

    Article  Google Scholar 

  42. Gelfand BS, Shimizu GKH (2016) Parameterizing and grading hydrolytic stability in metal-organic frameworks. Dalton Trans 45:3668–3678. https://doi.org/10.1039/C5DT04049C

    Article  Google Scholar 

  43. Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114:10575–10612. https://doi.org/10.1021/cr5002589

    Article  Google Scholar 

  44. Jeremias F, Lozan V, Henninger SK, Janiak C (2013) Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans 42:15967–15973. https://doi.org/10.1039/C3DT51471D

    Article  Google Scholar 

  45. Qadir N, Said SAM, Bahaidarah HM (2015) Structural stability of metal organic frameworks in aqueous media – controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater 201:61–90. https://doi.org/10.1016/j.micromeso.2014.09.034

    Article  Google Scholar 

  46. Chapman KW, Halder GJ, Chupas PJ (2008) Guest-dependent high pressure phenomena in a Nanoporous metal−organic framework material. J Am Chem Soc 130:10524–10526. https://doi.org/10.1021/ja804079z

    Article  Google Scholar 

  47. Graham AJ, Tan J-C, Allan DR, Moggach SA (2012) The effect of pressure on Cu-btc: framework compression vs. guest inclusion. Chem Commun 48:1535–1537. https://doi.org/10.1039/C1CC16045A

    Article  Google Scholar 

  48. Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. Chem Soc Rev 40:1059–1080. https://doi.org/10.1039/C0CS00163E

    Article  Google Scholar 

  49. Bahr DF et al (2007) Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals. Phys Rev B 76:184106. https://doi.org/10.1103/PhysRevB.76.184106

    Article  Google Scholar 

  50. Kuc A, Enyashin A, Seifert G (2007) Metal−organic frameworks: structural, energetic, electronic, and mechanical properties. J Phys Chem B 111:8179–8186. https://doi.org/10.1021/jp072085x

    Article  Google Scholar 

  51. Wu H, Yildirim T, Zhou W (2013) Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. J Phys Chem Lett 4:925–930. https://doi.org/10.1021/jz4002345

    Article  Google Scholar 

  52. Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78:267–291. https://doi.org/10.1180/minmag.2014.078.2.04

    Article  Google Scholar 

  53. Tan JC, Bennett TD, Cheetham AK (2010) Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate frameworks. PNAS 107:9938–9943. https://doi.org/10.1073/pnas.1003205107

    Article  Google Scholar 

  54. Kumar R, Raut D, Ahmad I, Ramamurty U, Maji TK, Rao CNR (2014) Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal-organic framework, ZIF-8, with BN nanosheets. Mater Horiz 1:513–517. https://doi.org/10.1039/C4MH00065J

    Article  Google Scholar 

  55. Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal-organic frameworks – influence of structure and chemical bonding. APL Mater 2:123902. https://doi.org/10.1063/1.4904966

    Article  Google Scholar 

  56. Boyd PG, Moosavi SM, Witman M, Smit B (2017) Force-field prediction of materials properties in metal-organic frameworks. J Phys Chem Lett 8:357–363. https://doi.org/10.1021/acs.jpclett.6b02532

    Article  Google Scholar 

  57. Kondo M et al (1999) Rational synthesis of stable channel-like cavities with methane gas adsorption properties: {Cu-2(pzdc)(2)(L)}(n) (pzde = pyrazine-2,3-dicarboxylate; L = a pillar ligand). Angew Chem Int Ed 38:140–143. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9

    Google Scholar 

  58. Noro S-I, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew Chem Int Ed 39:2082–2084

    Article  Google Scholar 

  59. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129. https://doi.org/10.1126/science.1083440

    Article  Google Scholar 

  60. Furukawa H et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428. https://doi.org/10.1126/science.1192160

    Article  Google Scholar 

  61. Hu YH, Zhang L (2010) Hydrogen storage in metal-organic frameworks. Adv Mater 22:E117–E130. https://doi.org/10.1002/adma.200902096

    Article  Google Scholar 

  62. Alezi D et al (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137:13308–13318. https://doi.org/10.1021/jacs.5b07053

    Article  Google Scholar 

  63. Lin X et al (2006) High H2 adsorption by coordination-framework materials. Angew Chem Int Ed 45:7358–7364. https://doi.org/10.1002/anie.200601991

    Article  Google Scholar 

  64. Lin X, Jia JH, Hubberstey P, Schroder M, Champness NR (2007) Hydrogen storage in metal-organic frameworks. CrystEngComm 9:438–448. https://doi.org/10.1039/b706207a

    Article  Google Scholar 

  65. Schmitz B, Müller U, Trukhan N, Schubert M, Férey G, Hirscher M (2008) Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9:2181–2184. https://doi.org/10.1002/cphc.200800463

    Article  Google Scholar 

  66. Gómez-Gualdrón DA et al (2017) Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Appl Mater Interfaces 9:33419–33428. https://doi.org/10.1021/acsami.7b01190

    Article  Google Scholar 

  67. He Y, Zhou W, Yildirim T, Chen B (2013) A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy Environ Sci 6:2735–2744. https://doi.org/10.1039/C3EE41166D

    Article  Google Scholar 

  68. Stoeck U, Krause S, Bon V, Senkovska I, Kaskel S (2012) A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem Commun 48:10841–10843. https://doi.org/10.1039/c2cc34840c

    Article  Google Scholar 

  69. Li B, Wen H-M, Zhou W, Xu Jeff Q, Chen B (2016) Porous metal-organic frameworks: promising materials for methane storage. Chem 1:557–580. https://doi.org/10.1016/j.chempr.2016.09.009

    Article  Google Scholar 

  70. Drache F, Bon V, Senkovska I, Getzschmann J, Kaskel S (2017) The modulator driven polymorphism of Zr(IV) based metal–organic frameworks. Philos Trans R Soc A 375. https://doi.org/10.1098/rsta.2016.0027

    Article  Google Scholar 

  71. Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532. https://doi.org/10.1021/ja404514r

    Article  Google Scholar 

  72. Senkovska I, Kaskel S (2014) Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chem Commun 50:7089–7098. https://doi.org/10.1039/c4cc00524d

    Article  Google Scholar 

  73. Klein N et al (2011) Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem Eur J 17:13007–13016. https://doi.org/10.1002/chem.201101383

    Article  Google Scholar 

  74. Müller P, Wisser FM, Bon V, Grünker R, Senkovska I, Kaskel S (2015) Postsynthetic paddle-wheel cross-linking and functionalization of 1,3-Phenylenebis(azanetriyl)tetrabenzoate-based MOFs. Chem Mater 27:2460–2467. https://doi.org/10.1021/cm5045732

    Article  Google Scholar 

  75. Burnett BJ, Choe W (2012) Stepwise pillar insertion into metal-organic frameworks: a sequential self-assembly approach. CrystEngComm 14:6129–6131. https://doi.org/10.1039/C2CE25545F

    Article  Google Scholar 

  76. Jeong S, Kim D, Shin S, Moon D, Cho SJ, Lah MS (2014) Combinational synthetic approaches for Isoreticular and polymorphic metal–organic frameworks with tuned pore geometries and surface properties. Chem Mater 26:1711–1719. https://doi.org/10.1021/cm404239s

    Article  Google Scholar 

  77. Yuan S et al (2016) Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts. Angew Chem Int Ed 55:10776–10780. https://doi.org/10.1002/anie.201604313

    Article  Google Scholar 

  78. Deng H et al (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023. https://doi.org/10.1126/science.1220131

    Article  Google Scholar 

  79. Bury W, Fairen-Jimenez D, Lalonde MB, Snurr RQ, Farha OK, Hupp JT (2013) Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange. Chem Mater 25:739–744. https://doi.org/10.1021/cm303749m

    Article  Google Scholar 

  80. Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691. https://doi.org/10.1021/ja403810k

    Article  Google Scholar 

  81. Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912. https://doi.org/10.1039/C4CS00067F

    Article  Google Scholar 

  82. Batten SR, Robson R (1998) Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 37:1460–1494. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z

    Article  Google Scholar 

  83. Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859. https://doi.org/10.1021/ja067435s

    Article  Google Scholar 

  84. Jiang H-L, Makal TA, Zhou H-C (2013) Interpenetration control in metal–organic frameworks for functional applications. Coord Chem Rev 257:2232–2249. https://doi.org/10.1016/j.ccr.2013.03.017

    Article  Google Scholar 

  85. Haldar R, Sikdar N, Maji TK (2015) Interpenetration in coordination polymers: structural diversities toward porous functional materials. Mater Today 18:97–116. https://doi.org/10.1016/j.mattod.2014.10.038

    Article  Google Scholar 

  86. Ferguson A et al (2016) Controlled partial interpenetration in metal–organic frameworks. Nat Chem 8:250. https://doi.org/10.1038/nchem.2430

    Article  Google Scholar 

  87. Jeong S et al (2017) Topology conversions of non-interpenetrated metal–organic frameworks to doubly interpenetrated metal–organic frameworks. Chem Mater 29:3899–3907. https://doi.org/10.1021/acs.chemmater.6b05277

    Article  Google Scholar 

  88. Alexandrov E, Blatov V, Proserpio D (2014) Interpenetration of three-periodic networks in crystal structures: description and classification methods, geometrical-topological conditions of implementation. J Struct Chem 55:1308–1325. https://doi.org/10.1134/S0022476614070130

    Article  Google Scholar 

  89. Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal-organic frameworks and why we need them. Crystals 5:154–162. https://doi.org/10.3390/cryst5010154

    Article  Google Scholar 

  90. Eddaoudi M, Kim J, Wachter JB, Chae HK, O’Keeffe M, Yaghi OM (2001) Porous metal−organic Polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J Am Chem Soc 123:4368–4369. https://doi.org/10.1021/ja0104352

    Article  Google Scholar 

  91. Moulton B, Lu J, Mondal A, Zaworotko MJ (2001) Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem Commun:863–864. https://doi.org/10.1039/B102714J

  92. Ke Y, Collins DJ, Zhou H-C (2005) Synthesis and structure of Cuboctahedral and Anticuboctahedral cages containing 12 Quadruply bonded Dimolybdenum units. Inorg Chem 44:4154–4156. https://doi.org/10.1021/ic050460z

    Article  Google Scholar 

  93. Perry JJ, Kravtsov VC, McManus GJ, Zaworotko MJ (2007) Bottom up synthesis that does not start at the bottom: quadruple covalent cross-linking of nanoscale faceted Polyhedra. J Am Chem Soc 129:10076–10077. https://doi.org/10.1021/ja0734952

    Article  Google Scholar 

  94. Cairns AJ, Perman JA, Wojtas L, Kravtsov VC, Alkordi MH, Eddaoudi M, Zaworotko MJ (2008) Supermolecular Building Blocks (SBBs) and Crystal Design: 12-connected open frameworks based on a molecular Cubohemioctahedron. J Am Chem Soc 130:1560–1561. https://doi.org/10.1021/ja078060t

    Article  Google Scholar 

  95. Li J-R, Yakovenko AA, Lu W, Timmons DJ, Zhuang W, Yuan D, Zhou H-C (2010) Ligand bridging-angle-driven assembly of molecular architectures based on Quadruply bonded Mo−Mo dimers. J Am Chem Soc 132:17599–17610. https://doi.org/10.1021/ja1080794

    Article  Google Scholar 

  96. Jian-Rong L, Hong-Cai Z (2010) Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat Chem 2:893–898. https://doi.org/10.1038/nchem.803

    Article  Google Scholar 

  97. Lopez-Olvera A, Sanchez-Gonzalez E, Campos-Reales-Pineda A, Aguilar-Granda A, Ibarra IA, Rodriguez-Molina B (2017) CO2 capture in a carbazole-based supramolecular polyhedron structure: the significance of Cu(ii) open metal sites. Inorg Chem Front 4:56–64. https://doi.org/10.1039/C6QI00342G

    Article  Google Scholar 

  98. Perry Iv JJ, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417. https://doi.org/10.1039/b807086p

    Article  Google Scholar 

  99. Zou Y, Park M, Hong S, Lah MS (2008) A designed metal-organic framework based on a metal-organic polyhedron. Chem Commun:2340–2342. https://doi.org/10.1039/B801103F

  100. Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) Supermolecular Building Blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J Am Chem Soc 130:1833–1835. https://doi.org/10.1021/ja710123s

    Article  Google Scholar 

  101. Lu W, Yuan D, Makal TA, Wei Z, Li J-R, Zhou H-C (2013) Highly porous metal-organic framework sustained with 12-connected nanoscopic octahedra. Dalton Trans 42:1708–1714. https://doi.org/10.1039/c2dt32479b

    Article  Google Scholar 

  102. Li J-R, Timmons DJ, Zhou H-C (2009) Interconversion between molecular Polyhedra and metal−organic frameworks. J Am Chem Soc 131:6368–6369. https://doi.org/10.1021/ja901731z

    Article  Google Scholar 

  103. Guillerm V et al (2014) A supermolecular building approach for the design and construction of metal-organic frameworks. Chem Soc Rev. https://doi.org/10.1039/c4cs00135d

    Article  Google Scholar 

  104. He Y, Chen B (2011) Metal–organic frameworks: frameworks containing open sites. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley. https://doi.org/10.1002/9781119951438.eibc2213

  105. Panella B, Hirscher M (2010) Physisorption in porous materials. In: Handbook of hydrogen storage. Wiley-VCH Verlag, pp 39–62. https://doi.org/10.1002/9783527629800.ch2

    Chapter  Google Scholar 

  106. Lebedev OI, Millange F, Serre C, Van Tendeloo G, Ferey G (2005) First direct imaging of Giant pores of the metal-organic framework MIL-101. Chem Mater 17:6525–6527. https://doi.org/10.1021/cm051870o

    Article  Google Scholar 

  107. Bonino F et al (2008) Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO. Chem Mater 20:4957–4968. https://doi.org/10.1021/cm800686k

    Article  Google Scholar 

  108. Peterson VK, Liu Y, Brown CM, Kepert CJ (2006) Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 128:15578–15579. https://doi.org/10.1021/ja0660857

    Article  Google Scholar 

  109. Peterson VK, Brown CM, Liu Y, Kepert CJ (2011) Structural study of D2 within the Trimodal pore system of a metal organic framework. J Phys Chem C 115:8851–8857. https://doi.org/10.1021/jp2010937

    Article  Google Scholar 

  110. Lin X et al (2009) High capacity hydrogen adsorption in Cu(II) Tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131:2159–2171. https://doi.org/10.1021/ja806624j

    Article  Google Scholar 

  111. Getzschmann J et al (2010) Methane storage mechanism in the metal-organic framework Cu3(btc)2: an in situ neutron diffraction study. Microporous Mesoporous Mater 136:50–58. https://doi.org/10.1016/j.micromeso.2010.07.020

    Article  Google Scholar 

  112. Xiang S, Zhou W, Gallegos JM, Liu Y, Chen B (2009) Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. J Am Chem Soc 131:12415–12419. https://doi.org/10.1021/ja904782h

    Article  Google Scholar 

  113. Wu H, Zhou W, Yildirim T (2009) High-capacity methane storage in metal−organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000. https://doi.org/10.1021/ja900258t

    Article  Google Scholar 

  114. Easun TL, Moreau F, Yan Y, Yang S, Schroder M (2017) Structural and dynamic studies of substrate binding in porous metal-organic frameworks. Chem Soc Rev 46:239–274. https://doi.org/10.1039/C6CS00603E

    Article  Google Scholar 

  115. The use of metalloligands in metal-organic frameworks. In: Progress in inorganic chemistry. https://doi.org/10.1002/9780470440124.ch4

    Chapter  Google Scholar 

  116. Zou C, Wu C-D (2012) Functional porphyrinic metal-organic frameworks: crystal engineering and applications. Dalton Trans 41:3879–3888. https://doi.org/10.1039/C2DT11989G

    Article  Google Scholar 

  117. Kitaura R, Onoyama G, Sakamoto H, Matsuda R, Noro SI, Kitagawa S (2004) Immobilization of a Metallo Schiff Base into a microporous coordination polymer. Angew Chem Int Ed 43:2684–2687. https://doi.org/10.1002/anie.200352596

    Article  Google Scholar 

  118. Choi E-Y, Wray CA, Hu C, Choe W (2009) Highly tunable metal-organic frameworks with open metal centers. CrystEngComm 11:553–555. https://doi.org/10.1039/B819707P

    Article  Google Scholar 

  119. Müller P, Bon V, Senkovska I, Getzschmann J, Weiss MS, Kaskel S (2017) Crystal engineering of Phenylenebis(azanetriyl)tetrabenzoate based metal–organic frameworks for gas storage applications. Cryst Growth Des 17:3221–3228. https://doi.org/10.1021/acs.cgd.7b00184

    Article  Google Scholar 

  120. Chong S, Thiele G, Kim J (2017) Excavating hidden adsorption sites in metal-organic frameworks using rational defect engineering. Nat Commun 8:1539. https://doi.org/10.1038/s41467-017-01478-4

    Article  Google Scholar 

  121. Jiang ZR, Wang H, Hu Y, Lu J, Jiang HL (2015) Polar group and defect engineering in a metal–organic framework: synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8:878–885. https://doi.org/10.1002/cssc.201403230

    Article  Google Scholar 

  122. Lin Y, Kong C, Chen L (2016) Amine-functionalized metal-organic frameworks: structure, synthesis and applications. RSC Adv 6:32598–32614. https://doi.org/10.1039/C6RA01536K

    Article  Google Scholar 

  123. Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, Triazolate-bridged metal−organic framework functionalized with Ethylenediamine. J Am Chem Soc 131:8784–8786. https://doi.org/10.1021/ja903411w

    Article  Google Scholar 

  124. McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065. https://doi.org/10.1021/ja300034j

    Article  Google Scholar 

  125. McDonald TM et al (2015) Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303. https://doi.org/10.1038/nature14327

    Article  Google Scholar 

  126. Flaig RW et al (2017) The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J Am Chem Soc 139:12125–12128. https://doi.org/10.1021/jacs.7b06382

    Article  Google Scholar 

  127. Yang S et al (2012) Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat Chem 4:887. https://doi.org/10.1038/nchem.1457

    Article  Google Scholar 

  128. Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H (2016) A robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversion. Chem Mater 28:6276–6281. https://doi.org/10.1021/acs.chemmater.6b02511

    Article  Google Scholar 

  129. Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000. https://doi.org/10.1021/cr200179u

    Article  Google Scholar 

  130. Wang Z, Tanabe KK, Cohen SM (2009) Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg Chem 48:296–306. https://doi.org/10.1021/ic801837t

    Article  Google Scholar 

  131. Goto Y, Sato H, Shinkai S, Sada K (2008) “Clickable” metal−organic framework. J Am Chem Soc 130:14354–14355. https://doi.org/10.1021/ja7114053

    Article  Google Scholar 

  132. Hwang YK et al (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148. https://doi.org/10.1002/anie.200705998

    Article  Google Scholar 

  133. Drache F, Bon V, Senkovska I, Marschelke C, Synytska A, Kaskel S (2016) Postsynthetic inner-surface functionalization of the highly stable zirconium-based metal–organic framework DUT-67. Inorg Chem 55:7206–7213. https://doi.org/10.1021/acs.inorgchem.6b00829

    Article  Google Scholar 

  134. Nguyen KD, Kutzscher C, Drache F, Senkovska I, Kaskel S (2018) Chiral functionalization of a zirconium metal–organic framework (DUT-67) as a heterogeneous catalyst in asymmetric Michael addition reaction. Inorg Chem 57:1483–1489. https://doi.org/10.1021/acs.inorgchem.7b02854

    Article  Google Scholar 

  135. Doonan CJ, Morris W, Furukawa H, Yaghi OM (2009) Isoreticular metalation of metal−organic frameworks. J Am Chem Soc 131:9492–9493. https://doi.org/10.1021/ja903251e

    Article  Google Scholar 

  136. Yamada T, Kitagawa H (2009) Protection and deprotection approach for the introduction of functional groups into metal−organic frameworks. J Am Chem Soc 131:6312–6313. https://doi.org/10.1021/ja809352y

    Article  Google Scholar 

  137. Deshpande RK, Minnaar JL, Telfer SG (2010) Thermolabile groups in metal–organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion, and protection of reactive functional groups. Angew Chem Int Ed 49:4598–4602. https://doi.org/10.1002/anie.200905960

    Article  Google Scholar 

  138. Kutzscher C, Nickerl G, Senkovska I, Bon V, Kaskel S (2016) Proline functionalized UiO-67 and UiO-68 type metal–organic frameworks showing reversed diastereoselectivity in aldol addition reactions. Chem Mater 28:2573–2580. https://doi.org/10.1021/acs.chemmater.5b04575

    Article  Google Scholar 

  139. Brozek CK, Dinca M (2014) Cation exchange at the secondary building units of metal-organic frameworks. Chem Soc Rev 43:5456–5467. https://doi.org/10.1039/C4CS00002A

    Article  Google Scholar 

  140. Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal-organic frameworks. Chem Soc Rev 43:5933–5951. https://doi.org/10.1039/C4CS00076E

    Article  Google Scholar 

  141. Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695–704. https://doi.org/10.1038/nchem.444

    Article  Google Scholar 

  142. Blake JA, Hill JS, Hubberstey P, Li W-S (1997) Rectangular grid two-dimensional sheets of copper(II) bridged by both co-ordinated and hydrogen bonded 4,4[prime or minute]-bipyridine (4,4[prime or minute]-bipy) in [Cu([small micro]-4,4[prime or minute]-bipy)(H2O)2(FBF3) 2][middle dot]4,4[prime or minute]-bipy. Dalton Trans:913–914. https://doi.org/10.1039/A700036G

  143. Kitaura R, Fujimoto K, Noro S-i, Kondo M, Kitagawa S (2002) A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol). Angew Chem Int Ed 41:133–135. https://doi.org/10.1002/1521-3773(20020104)41:1<133::aid-anie133>3.0.co;2-r

    Article  Google Scholar 

  144. Li D, Kaneko K (2001) Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem Phys Lett 335:50–56. https://doi.org/10.1016/S0009-2614(00)01419-6

    Article  Google Scholar 

  145. Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal-organic frameworks. Chem Soc Rev 43:6062–6096. https://doi.org/10.1039/c4cs00101j

    Article  Google Scholar 

  146. Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G (2002) Very large breathing effect in the first Nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. J Am Chem Soc 124:13519–13526. https://doi.org/10.1021/ja0276974

    Article  Google Scholar 

  147. Mellot-Draznieks C, Serre C, Surblé S, Audebrand N, Férey G (2005) Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J Am Chem Soc 127:16273–16278. https://doi.org/10.1021/ja054900x

    Article  Google Scholar 

  148. Klein N et al (2010) Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal-organic framework Ni2(2,6-ndc)2(dabco). Phys Chem Chem Phys 12:11778–11784. https://doi.org/10.1039/c003835k

    Article  Google Scholar 

  149. Bon V et al (2015) Exceptional adsorption-induced cluster and network deformation in the flexible metal-organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Phys Chem Chem Phys 17:17471–17479. https://doi.org/10.1039/C5CP02180D

    Article  Google Scholar 

  150. Bureekaew S et al (2010) Control of interpenetration for tuning structural flexibility influences sorption properties. Angew Chem Int Ed 49:7660–7664. https://doi.org/10.1002/anie.201002259

    Article  Google Scholar 

  151. Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S, Düren T (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902. https://doi.org/10.1021/ja202154j

    Article  Google Scholar 

  152. Krause S et al (2016) A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532:348–352. https://doi.org/10.1038/nature17430

    Article  Google Scholar 

  153. Coudert F-X (2015) Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 27:1905–1916. https://doi.org/10.1021/acs.chemmater.5b00046

    Article  Google Scholar 

  154. Chang Z, Yang D-H, Xu J, Hu T-L, Bu X-H (2015) Flexible metal–organic frameworks: recent advances and potential applications. Adv Mater 27:5432–5441. https://doi.org/10.1002/adma.201501523

    Article  Google Scholar 

  155. Sato H et al (2014) Self-accelerating CO sorption in a soft Nanoporous crystal. Science 343:167–170. https://doi.org/10.1126/science.1246423

    Article  Google Scholar 

  156. Freund P, Senkovska I, Kaskel S (2017) Switchable conductive MOF–Nanocarbon composite coatings as threshold sensing architectures. ACS Appl Mater Interfaces 9:43782–43789. https://doi.org/10.1021/acsami.7b13924

    Article  Google Scholar 

  157. Mason JA et al (2015) Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527:357–361. https://doi.org/10.1038/nature15732

    Article  Google Scholar 

  158. Bon V et al (2014) In situ observation of gating phenomena in the flexible porous coordination polymer Zn2(BPnDC)2(bpy) (SNU-9) in a combined diffraction and gas adsorption experiment. Inorg Chem 53:1513–1520. https://doi.org/10.1021/ic4024844

    Article  Google Scholar 

  159. Park HJ, Suh MP (2010) Stepwise and hysteretic sorption of N2, O2, CO2, and H2 gases in a porous metal-organic framework [Zn2(BPnDC)2(bpy)]. Chem Commun 46:610–612. https://doi.org/10.1039/B913067E

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Senkovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bon, V., Senkovska, I., Kaskel, S. (2019). Metal-Organic Frameworks. In: Kaneko, K., Rodríguez-Reinoso, F. (eds) Nanoporous Materials for Gas Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3504-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3503-7

  • Online ISBN: 978-981-13-3504-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics