Abstract
Metal-organic frameworks (MOFs) are a relatively young class of porous materials. They consist of inorganic complexes as nodes connected by multifunctional organic molecules (linkers). Highly porous MOFs reach records in terms of storage capacities for gases and vapors. The main characteristics of MOFs responsible for the success of them as adsorbents are crystallinity, modular composition, as well as exceptionally high specific surface areas and pore volumes. The chapter outlines structural building principles of MOFs and describes a few prototypical structures with value for gas storage. Also important characteristics such as pore size distribution and inner surface functionality are controllable in MOFs by the chemistry of the building blocks. As a consequence, MOF materials provide a platform to precisely study the gas adsorption from theoretical and experimental point of view and also to reach ideal material characteristics for the adsorption of the molecules of interest. Moreover, the intrinsic flexibility of the MOFs, leading to structural transformations and unique stepwise adsorption behavior not observed for rigid porous materials, opens new horizons for the design of effective “smart” adsorbents.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Batten SR et al (2013) Terminology of metal-organic frameworks and coordination polymers (IUPAC recommendations 2013). Pure Appl Chem 85:1715–1724. https://doi.org/10.1351/pac-rec-12-11-20
Hoskins BF, Robson R (1990) Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″’-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 112:1546. https://doi.org/10.1021/ja00160a038
Hoskins BF, Robson R (1989) Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 111:5962. https://doi.org/10.1021/ja00197a079
Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc Chem Res 34:319–330. https://doi.org/10.1021/ar000034b
Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714. https://doi.org/10.1038/nature01650
O’Keeffe M, Yaghi OM (2012) Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem Rev 112:675–702. https://doi.org/10.1021/cr200205j
Li M, Li D, O’Keeffe M, Yaghi OM (2014) Topological analysis of metal–organic frameworks with Polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem Rev 114:1343–1370. https://doi.org/10.1021/cr400392k
Inge AK et al (2016) Unprecedented topological complexity in a metal–organic framework constructed from simple building units. J Am Chem Soc 138:1970–1976. https://doi.org/10.1021/jacs.5b12484
Howarth AJ, Li P, Farha OK, O’Keeffe M (2018) Bottom-up design and generation of complex structures: a new twist in reticular chemistry. Cryst Growth Des 18:449–455. https://doi.org/10.1021/acs.cgd.7b01434
Bon V, Senkovska I, Baburin IA, Kaskel S (2013) Zr- and Hf-based metal–organic frameworks: tracking down the polymorphism. Cryst Growth Des 13:1231–1237. https://doi.org/10.1021/cg301691d
Ockwig NW, Delgado-Friedrichs O, O’Keeffe M, Yaghi OM (2005) Reticular chemistry: occurrence and taxonomy of nets and grammar for the Design of Frameworks. Acc Chem Res 38:176–182. https://doi.org/10.1021/ar020022l
Furukawa H, Kim J, Ockwig NW, O’Keeffe M, Yaghi OM (2008) Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal−organic frameworks and Polyhedra. J Am Chem Soc 130:11650–11661. https://doi.org/10.1021/ja803783c
Hyde ST, Delgado Friedrichs O, Ramsden SJ, Robins V (2006) Towards enumeration of crystalline frameworks: the 2D hyperbolic approach. Solid State Sci 8:740–752. https://doi.org/10.1016/j.solidstatesciences.2006.04.001
O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789. https://doi.org/10.1021/ar800124u
Kitagawa S, Munakata M, Tanimura T (1991) Tetranuclear copper(I)-based infinite one-dimentional chain complex. Synthesis and X-Ray crystal structure of {[Cu2(μ-3-methylpyridazine)2(μ-pyrazine)3](ClO4)2}∞. Chem Lett 20:623–626. https://doi.org/10.1246/cl.1991.623
Kondo M, Yoshitomi T, Matsuzaka H, Kitagawa S, Seki K (1997) Three-dimensional framework with channeling cavities for small molecules: {[M2(4, 4′-bpy)3(NO3)4]·xH2O}n (M=Co, Ni, Zn). Angew Chem Int Ed 36:1725–1727. https://doi.org/10.1002/anie.199717251
Kitagawa S, Kitaura R, S-i N (2004) Functional porous coordination polymers. Angew Chem Int Ed 43:2334–2375. https://doi.org/10.1002/anie.200300610
Yaghi OM, Li G, Groy TL (1995) Conversion of hydrogen-bonded manganese(II) and zinc(II) squarate (C4O42-) molecules, chains and sheets to three-dimensional cage networks. Dalton Trans:727–732. https://doi.org/10.1039/DT9950000727
Yaghi OM, Jernigan R, Li H, Davis EC, Groy TL (1997) Construction of a new open-framework solid from 1,3,5-cyclohexanetricarboxylate and zinc(II) building blocks. Dalton Trans:2383–2384. https://doi.org/10.1039/A702287E
Yaghi OM, Li H, Davis C, Richardson D, Groy TL (1998) Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids. Acc Chem Res 31:474–484. https://doi.org/10.1021/ar970151f
Kaye SS, Dailly A, Yaghi OM, Long JR (2007) Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). J Am Chem Soc 129:14176–14177. https://doi.org/10.1021/ja076877g
Chui SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams ID (1999) A chemically Functionalizable Nanoporous material Cu3(TMA)2(H2O)3. Science 283:1148–1150. https://doi.org/10.1126/science.283.5405.1148
Peng Y, Krungleviciute V, Eryazici I, Hupp JT, Farha OK, Yildirim T (2013) Methane storage in metal–organic frameworks: current records, surprise findings, and challenges. J Am Chem Soc 135:11887–11894. https://doi.org/10.1021/ja4045289
Senkovska I, Kaskel S (2008) High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater 112:108–115. https://doi.org/10.1016/j.micromeso.2007.09.016
Cheetham AK, Férey G, Loiseau T (1999) Open-framework inorganic materials. Angew Chem Int Ed 38:3268–3292. https://doi.org/10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U
Barthelet K, Riou D, Férey G (2001) Hydrothermal synthesis and structure determination of Ag3(VVO2){O3P-CH2-PO3} or MIL-42: a new vanadium(V) methylendiphosphonate inserting silver cations. Solid State Sci 3:203–209. https://doi.org/10.1016/S1293-2558(00)01132-8
Barthelet K, Marrot J, Riou D, Férey G (2002) A breathing hybrid organic–inorganic solid with very large pores and high magnetic characteristics. Angew Chem Int Ed 41:281–284. https://doi.org/10.1002/1521-3773(20020118)41:2<281::AID-ANIE281>3.0.CO;2-Y
Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S (2009) A mesoporous metal-organic framework. Angew Chem Int Ed 48:9954–9957. https://doi.org/10.1002/anie.200904599
Grünker R et al (2014) A new metal-organic framework with ultra-high surface area. Chem Commun 50:3450–3452. https://doi.org/10.1039/c4cc00113c
Stoeck U, Senkovska I, Bon V, Krause S, Kaskel S (2015) Assembly of metal-organic polyhedra into highly porous frameworks for ethene delivery. Chem Commun 51:1046–1049. https://doi.org/10.1039/c4cc07920e
Furukawa H et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428. https://doi.org/10.1126/science.1192160
Farha OK et al (2010) De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat Chem 2:944–948. https://doi.org/10.1038/nchem.834
Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Cryst B72:171–179. https://doi.org/10.1107/S2052520616003954
Oien-Odegaard S, Shearer GC, Wragg DS, Lillerud KP (2017) Pitfalls in metal-organic framework crystallography: towards more accurate crystal structures. Chem Soc Rev 46:4867–4876. https://doi.org/10.1039/C6CS00533K
Gandara F, Bennett TD (2014) Crystallography of metal-organic frameworks. IUCrJ 1:563–570. https://doi.org/10.1107/S2052252514020351
Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. https://doi.org/10.1126/science.1116275
Sarkisov L, Harrison A (2011) Computational structure characterisation tools in application to ordered and disordered porous materials. Mol Sim 37:1248–1257. https://doi.org/10.1080/08927022.2011.592832
Willems TF, Rycroft CH, Kazi M, Meza JC, Haranczyk M (2012) Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous Mesoporous Mater 149:134–141. https://doi.org/10.1016/j.micromeso.2011.08.020
Chempath S, Düren T, Sarkisov L, Snurr RQ (2013) Experiences with the publicly available multipurpose simulation code, Music. Mol Sim 39:1223–1232. https://doi.org/10.1080/08927022.2013.819103
Dubbeldam D, Calero S, Ellis DE, Snurr RQ (2016) RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol Sim 42:81–101. https://doi.org/10.1080/08927022.2015.1010082
Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK (2016) Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater 1:15018. https://doi.org/10.1038/natrevmats.2015.18
Gelfand BS, Shimizu GKH (2016) Parameterizing and grading hydrolytic stability in metal-organic frameworks. Dalton Trans 45:3668–3678. https://doi.org/10.1039/C5DT04049C
Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114:10575–10612. https://doi.org/10.1021/cr5002589
Jeremias F, Lozan V, Henninger SK, Janiak C (2013) Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans 42:15967–15973. https://doi.org/10.1039/C3DT51471D
Qadir N, Said SAM, Bahaidarah HM (2015) Structural stability of metal organic frameworks in aqueous media – controlling factors and methods to improve hydrostability and hydrothermal cyclic stability. Microporous Mesoporous Mater 201:61–90. https://doi.org/10.1016/j.micromeso.2014.09.034
Chapman KW, Halder GJ, Chupas PJ (2008) Guest-dependent high pressure phenomena in a Nanoporous metal−organic framework material. J Am Chem Soc 130:10524–10526. https://doi.org/10.1021/ja804079z
Graham AJ, Tan J-C, Allan DR, Moggach SA (2012) The effect of pressure on Cu-btc: framework compression vs. guest inclusion. Chem Commun 48:1535–1537. https://doi.org/10.1039/C1CC16045A
Tan JC, Cheetham AK (2011) Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships. Chem Soc Rev 40:1059–1080. https://doi.org/10.1039/C0CS00163E
Bahr DF et al (2007) Mechanical properties of cubic zinc carboxylate IRMOF-1 metal-organic framework crystals. Phys Rev B 76:184106. https://doi.org/10.1103/PhysRevB.76.184106
Kuc A, Enyashin A, Seifert G (2007) Metal−organic frameworks: structural, energetic, electronic, and mechanical properties. J Phys Chem B 111:8179–8186. https://doi.org/10.1021/jp072085x
Wu H, Yildirim T, Zhou W (2013) Exceptional mechanical stability of highly porous zirconium metal–organic framework UiO-66 and its important implications. J Phys Chem Lett 4:925–930. https://doi.org/10.1021/jz4002345
Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78:267–291. https://doi.org/10.1180/minmag.2014.078.2.04
Tan JC, Bennett TD, Cheetham AK (2010) Chemical structure, network topology, and porosity effects on the mechanical properties of Zeolitic Imidazolate frameworks. PNAS 107:9938–9943. https://doi.org/10.1073/pnas.1003205107
Kumar R, Raut D, Ahmad I, Ramamurty U, Maji TK, Rao CNR (2014) Functionality preservation with enhanced mechanical integrity in the nanocomposites of the metal-organic framework, ZIF-8, with BN nanosheets. Mater Horiz 1:513–517. https://doi.org/10.1039/C4MH00065J
Li W, Henke S, Cheetham AK (2014) Research update: mechanical properties of metal-organic frameworks – influence of structure and chemical bonding. APL Mater 2:123902. https://doi.org/10.1063/1.4904966
Boyd PG, Moosavi SM, Witman M, Smit B (2017) Force-field prediction of materials properties in metal-organic frameworks. J Phys Chem Lett 8:357–363. https://doi.org/10.1021/acs.jpclett.6b02532
Kondo M et al (1999) Rational synthesis of stable channel-like cavities with methane gas adsorption properties: {Cu-2(pzdc)(2)(L)}(n) (pzde = pyrazine-2,3-dicarboxylate; L = a pillar ligand). Angew Chem Int Ed 38:140–143. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<140::AID-ANIE140>3.0.CO;2-9
Noro S-I, Kitagawa S, Kondo M, Seki K (2000) A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew Chem Int Ed 39:2082–2084
Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science 300:1127–1129. https://doi.org/10.1126/science.1083440
Furukawa H et al (2010) Ultrahigh porosity in metal-organic frameworks. Science 329:424–428. https://doi.org/10.1126/science.1192160
Hu YH, Zhang L (2010) Hydrogen storage in metal-organic frameworks. Adv Mater 22:E117–E130. https://doi.org/10.1002/adma.200902096
Alezi D et al (2015) MOF crystal chemistry paving the way to gas storage needs: aluminum-based soc-MOF for CH4, O2, and CO2 storage. J Am Chem Soc 137:13308–13318. https://doi.org/10.1021/jacs.5b07053
Lin X et al (2006) High H2 adsorption by coordination-framework materials. Angew Chem Int Ed 45:7358–7364. https://doi.org/10.1002/anie.200601991
Lin X, Jia JH, Hubberstey P, Schroder M, Champness NR (2007) Hydrogen storage in metal-organic frameworks. CrystEngComm 9:438–448. https://doi.org/10.1039/b706207a
Schmitz B, Müller U, Trukhan N, Schubert M, Férey G, Hirscher M (2008) Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9:2181–2184. https://doi.org/10.1002/cphc.200800463
Gómez-Gualdrón DA et al (2017) Understanding volumetric and gravimetric hydrogen adsorption trade-off in metal–organic frameworks. ACS Appl Mater Interfaces 9:33419–33428. https://doi.org/10.1021/acsami.7b01190
He Y, Zhou W, Yildirim T, Chen B (2013) A series of metal-organic frameworks with high methane uptake and an empirical equation for predicting methane storage capacity. Energy Environ Sci 6:2735–2744. https://doi.org/10.1039/C3EE41166D
Stoeck U, Krause S, Bon V, Senkovska I, Kaskel S (2012) A highly porous metal-organic framework, constructed from a cuboctahedral super-molecular building block, with exceptionally high methane uptake. Chem Commun 48:10841–10843. https://doi.org/10.1039/c2cc34840c
Li B, Wen H-M, Zhou W, Xu Jeff Q, Chen B (2016) Porous metal-organic frameworks: promising materials for methane storage. Chem 1:557–580. https://doi.org/10.1016/j.chempr.2016.09.009
Drache F, Bon V, Senkovska I, Getzschmann J, Kaskel S (2017) The modulator driven polymorphism of Zr(IV) based metal–organic frameworks. Philos Trans R Soc A 375. https://doi.org/10.1098/rsta.2016.0027
Wu H, Chua YS, Krungleviciute V, Tyagi M, Chen P, Yildirim T, Zhou W (2013) Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. J Am Chem Soc 135:10525–10532. https://doi.org/10.1021/ja404514r
Senkovska I, Kaskel S (2014) Ultrahigh porosity in mesoporous MOFs: promises and limitations. Chem Commun 50:7089–7098. https://doi.org/10.1039/c4cc00524d
Klein N et al (2011) Route to a family of robust, non-interpenetrated metal–organic frameworks with pto-like topology. Chem Eur J 17:13007–13016. https://doi.org/10.1002/chem.201101383
Müller P, Wisser FM, Bon V, Grünker R, Senkovska I, Kaskel S (2015) Postsynthetic paddle-wheel cross-linking and functionalization of 1,3-Phenylenebis(azanetriyl)tetrabenzoate-based MOFs. Chem Mater 27:2460–2467. https://doi.org/10.1021/cm5045732
Burnett BJ, Choe W (2012) Stepwise pillar insertion into metal-organic frameworks: a sequential self-assembly approach. CrystEngComm 14:6129–6131. https://doi.org/10.1039/C2CE25545F
Jeong S, Kim D, Shin S, Moon D, Cho SJ, Lah MS (2014) Combinational synthetic approaches for Isoreticular and polymorphic metal–organic frameworks with tuned pore geometries and surface properties. Chem Mater 26:1711–1719. https://doi.org/10.1021/cm404239s
Yuan S et al (2016) Flexible zirconium metal-organic frameworks as bioinspired switchable catalysts. Angew Chem Int Ed 55:10776–10780. https://doi.org/10.1002/anie.201604313
Deng H et al (2012) Large-pore apertures in a series of metal-organic frameworks. Science 336:1018–1023. https://doi.org/10.1126/science.1220131
Bury W, Fairen-Jimenez D, Lalonde MB, Snurr RQ, Farha OK, Hupp JT (2013) Control over catenation in pillared paddlewheel metal–organic framework materials via solvent-assisted linker exchange. Chem Mater 25:739–744. https://doi.org/10.1021/cm303749m
Li T, Kozlowski MT, Doud EA, Blakely MN, Rosi NL (2013) Stepwise ligand exchange for the preparation of a family of mesoporous MOFs. J Am Chem Soc 135:11688–11691. https://doi.org/10.1021/ja403810k
Deria P, Mondloch JE, Karagiaridi O, Bury W, Hupp JT, Farha OK (2014) Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. Chem Soc Rev 43:5896–5912. https://doi.org/10.1039/C4CS00067F
Batten SR, Robson R (1998) Interpenetrating nets: ordered, periodic entanglement. Angew Chem Int Ed 37:1460–1494. https://doi.org/10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z
Ma S, Sun D, Ambrogio M, Fillinger JA, Parkin S, Zhou H-C (2007) Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. J Am Chem Soc 129:1858–1859. https://doi.org/10.1021/ja067435s
Jiang H-L, Makal TA, Zhou H-C (2013) Interpenetration control in metal–organic frameworks for functional applications. Coord Chem Rev 257:2232–2249. https://doi.org/10.1016/j.ccr.2013.03.017
Haldar R, Sikdar N, Maji TK (2015) Interpenetration in coordination polymers: structural diversities toward porous functional materials. Mater Today 18:97–116. https://doi.org/10.1016/j.mattod.2014.10.038
Ferguson A et al (2016) Controlled partial interpenetration in metal–organic frameworks. Nat Chem 8:250. https://doi.org/10.1038/nchem.2430
Jeong S et al (2017) Topology conversions of non-interpenetrated metal–organic frameworks to doubly interpenetrated metal–organic frameworks. Chem Mater 29:3899–3907. https://doi.org/10.1021/acs.chemmater.6b05277
Alexandrov E, Blatov V, Proserpio D (2014) Interpenetration of three-periodic networks in crystal structures: description and classification methods, geometrical-topological conditions of implementation. J Struct Chem 55:1308–1325. https://doi.org/10.1134/S0022476614070130
Öhrström L (2015) Let’s talk about MOFs—topology and terminology of metal-organic frameworks and why we need them. Crystals 5:154–162. https://doi.org/10.3390/cryst5010154
Eddaoudi M, Kim J, Wachter JB, Chae HK, O’Keeffe M, Yaghi OM (2001) Porous metal−organic Polyhedra: 25 Å cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks. J Am Chem Soc 123:4368–4369. https://doi.org/10.1021/ja0104352
Moulton B, Lu J, Mondal A, Zaworotko MJ (2001) Nanoballs: nanoscale faceted polyhedra with large windows and cavities. Chem Commun:863–864. https://doi.org/10.1039/B102714J
Ke Y, Collins DJ, Zhou H-C (2005) Synthesis and structure of Cuboctahedral and Anticuboctahedral cages containing 12 Quadruply bonded Dimolybdenum units. Inorg Chem 44:4154–4156. https://doi.org/10.1021/ic050460z
Perry JJ, Kravtsov VC, McManus GJ, Zaworotko MJ (2007) Bottom up synthesis that does not start at the bottom: quadruple covalent cross-linking of nanoscale faceted Polyhedra. J Am Chem Soc 129:10076–10077. https://doi.org/10.1021/ja0734952
Cairns AJ, Perman JA, Wojtas L, Kravtsov VC, Alkordi MH, Eddaoudi M, Zaworotko MJ (2008) Supermolecular Building Blocks (SBBs) and Crystal Design: 12-connected open frameworks based on a molecular Cubohemioctahedron. J Am Chem Soc 130:1560–1561. https://doi.org/10.1021/ja078060t
Li J-R, Yakovenko AA, Lu W, Timmons DJ, Zhuang W, Yuan D, Zhou H-C (2010) Ligand bridging-angle-driven assembly of molecular architectures based on Quadruply bonded Mo−Mo dimers. J Am Chem Soc 132:17599–17610. https://doi.org/10.1021/ja1080794
Jian-Rong L, Hong-Cai Z (2010) Bridging-ligand-substitution strategy for the preparation of metal-organic polyhedra. Nat Chem 2:893–898. https://doi.org/10.1038/nchem.803
Lopez-Olvera A, Sanchez-Gonzalez E, Campos-Reales-Pineda A, Aguilar-Granda A, Ibarra IA, Rodriguez-Molina B (2017) CO2 capture in a carbazole-based supramolecular polyhedron structure: the significance of Cu(ii) open metal sites. Inorg Chem Front 4:56–64. https://doi.org/10.1039/C6QI00342G
Perry Iv JJ, Perman JA, Zaworotko MJ (2009) Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem Soc Rev 38:1400–1417. https://doi.org/10.1039/b807086p
Zou Y, Park M, Hong S, Lah MS (2008) A designed metal-organic framework based on a metal-organic polyhedron. Chem Commun:2340–2342. https://doi.org/10.1039/B801103F
Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) Supermolecular Building Blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J Am Chem Soc 130:1833–1835. https://doi.org/10.1021/ja710123s
Lu W, Yuan D, Makal TA, Wei Z, Li J-R, Zhou H-C (2013) Highly porous metal-organic framework sustained with 12-connected nanoscopic octahedra. Dalton Trans 42:1708–1714. https://doi.org/10.1039/c2dt32479b
Li J-R, Timmons DJ, Zhou H-C (2009) Interconversion between molecular Polyhedra and metal−organic frameworks. J Am Chem Soc 131:6368–6369. https://doi.org/10.1021/ja901731z
Guillerm V et al (2014) A supermolecular building approach for the design and construction of metal-organic frameworks. Chem Soc Rev. https://doi.org/10.1039/c4cs00135d
He Y, Chen B (2011) Metal–organic frameworks: frameworks containing open sites. In: Encyclopedia of inorganic and bioinorganic chemistry. Wiley. https://doi.org/10.1002/9781119951438.eibc2213
Panella B, Hirscher M (2010) Physisorption in porous materials. In: Handbook of hydrogen storage. Wiley-VCH Verlag, pp 39–62. https://doi.org/10.1002/9783527629800.ch2
Lebedev OI, Millange F, Serre C, Van Tendeloo G, Ferey G (2005) First direct imaging of Giant pores of the metal-organic framework MIL-101. Chem Mater 17:6525–6527. https://doi.org/10.1021/cm051870o
Bonino F et al (2008) Local structure of CPO-27-Ni metallorganic framework upon dehydration and coordination of NO. Chem Mater 20:4957–4968. https://doi.org/10.1021/cm800686k
Peterson VK, Liu Y, Brown CM, Kepert CJ (2006) Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. J Am Chem Soc 128:15578–15579. https://doi.org/10.1021/ja0660857
Peterson VK, Brown CM, Liu Y, Kepert CJ (2011) Structural study of D2 within the Trimodal pore system of a metal organic framework. J Phys Chem C 115:8851–8857. https://doi.org/10.1021/jp2010937
Lin X et al (2009) High capacity hydrogen adsorption in Cu(II) Tetracarboxylate framework materials: the role of pore size, ligand functionalization, and exposed metal sites. J Am Chem Soc 131:2159–2171. https://doi.org/10.1021/ja806624j
Getzschmann J et al (2010) Methane storage mechanism in the metal-organic framework Cu3(btc)2: an in situ neutron diffraction study. Microporous Mesoporous Mater 136:50–58. https://doi.org/10.1016/j.micromeso.2010.07.020
Xiang S, Zhou W, Gallegos JM, Liu Y, Chen B (2009) Exceptionally high acetylene uptake in a microporous metal−organic framework with open metal sites. J Am Chem Soc 131:12415–12419. https://doi.org/10.1021/ja904782h
Wu H, Zhou W, Yildirim T (2009) High-capacity methane storage in metal−organic frameworks M2(dhtp): the important role of open metal sites. J Am Chem Soc 131:4995–5000. https://doi.org/10.1021/ja900258t
Easun TL, Moreau F, Yan Y, Yang S, Schroder M (2017) Structural and dynamic studies of substrate binding in porous metal-organic frameworks. Chem Soc Rev 46:239–274. https://doi.org/10.1039/C6CS00603E
The use of metalloligands in metal-organic frameworks. In: Progress in inorganic chemistry. https://doi.org/10.1002/9780470440124.ch4
Zou C, Wu C-D (2012) Functional porphyrinic metal-organic frameworks: crystal engineering and applications. Dalton Trans 41:3879–3888. https://doi.org/10.1039/C2DT11989G
Kitaura R, Onoyama G, Sakamoto H, Matsuda R, Noro SI, Kitagawa S (2004) Immobilization of a Metallo Schiff Base into a microporous coordination polymer. Angew Chem Int Ed 43:2684–2687. https://doi.org/10.1002/anie.200352596
Choi E-Y, Wray CA, Hu C, Choe W (2009) Highly tunable metal-organic frameworks with open metal centers. CrystEngComm 11:553–555. https://doi.org/10.1039/B819707P
Müller P, Bon V, Senkovska I, Getzschmann J, Weiss MS, Kaskel S (2017) Crystal engineering of Phenylenebis(azanetriyl)tetrabenzoate based metal–organic frameworks for gas storage applications. Cryst Growth Des 17:3221–3228. https://doi.org/10.1021/acs.cgd.7b00184
Chong S, Thiele G, Kim J (2017) Excavating hidden adsorption sites in metal-organic frameworks using rational defect engineering. Nat Commun 8:1539. https://doi.org/10.1038/s41467-017-01478-4
Jiang ZR, Wang H, Hu Y, Lu J, Jiang HL (2015) Polar group and defect engineering in a metal–organic framework: synergistic promotion of carbon dioxide sorption and conversion. ChemSusChem 8:878–885. https://doi.org/10.1002/cssc.201403230
Lin Y, Kong C, Chen L (2016) Amine-functionalized metal-organic frameworks: structure, synthesis and applications. RSC Adv 6:32598–32614. https://doi.org/10.1039/C6RA01536K
Demessence A, D’Alessandro DM, Foo ML, Long JR (2009) Strong CO2 binding in a water-stable, Triazolate-bridged metal−organic framework functionalized with Ethylenediamine. J Am Chem Soc 131:8784–8786. https://doi.org/10.1021/ja903411w
McDonald TM, Lee WR, Mason JA, Wiers BM, Hong CS, Long JR (2012) Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal–organic framework mmen-Mg2(dobpdc). J Am Chem Soc 134:7056–7065. https://doi.org/10.1021/ja300034j
McDonald TM et al (2015) Cooperative insertion of CO2 in diamine-appended metal-organic frameworks. Nature 519:303. https://doi.org/10.1038/nature14327
Flaig RW et al (2017) The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J Am Chem Soc 139:12125–12128. https://doi.org/10.1021/jacs.7b06382
Yang S et al (2012) Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat Chem 4:887. https://doi.org/10.1038/nchem.1457
Zhang G, Wei G, Liu Z, Oliver SRJ, Fei H (2016) A robust sulfonate-based metal–organic framework with permanent porosity for efficient CO2 capture and conversion. Chem Mater 28:6276–6281. https://doi.org/10.1021/acs.chemmater.6b02511
Cohen SM (2012) Postsynthetic methods for the functionalization of metal–organic frameworks. Chem Rev 112:970–1000. https://doi.org/10.1021/cr200179u
Wang Z, Tanabe KK, Cohen SM (2009) Accessing postsynthetic modification in a series of metal-organic frameworks and the influence of framework topology on reactivity. Inorg Chem 48:296–306. https://doi.org/10.1021/ic801837t
Goto Y, Sato H, Shinkai S, Sada K (2008) “Clickable” metal−organic framework. J Am Chem Soc 130:14354–14355. https://doi.org/10.1021/ja7114053
Hwang YK et al (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148. https://doi.org/10.1002/anie.200705998
Drache F, Bon V, Senkovska I, Marschelke C, Synytska A, Kaskel S (2016) Postsynthetic inner-surface functionalization of the highly stable zirconium-based metal–organic framework DUT-67. Inorg Chem 55:7206–7213. https://doi.org/10.1021/acs.inorgchem.6b00829
Nguyen KD, Kutzscher C, Drache F, Senkovska I, Kaskel S (2018) Chiral functionalization of a zirconium metal–organic framework (DUT-67) as a heterogeneous catalyst in asymmetric Michael addition reaction. Inorg Chem 57:1483–1489. https://doi.org/10.1021/acs.inorgchem.7b02854
Doonan CJ, Morris W, Furukawa H, Yaghi OM (2009) Isoreticular metalation of metal−organic frameworks. J Am Chem Soc 131:9492–9493. https://doi.org/10.1021/ja903251e
Yamada T, Kitagawa H (2009) Protection and deprotection approach for the introduction of functional groups into metal−organic frameworks. J Am Chem Soc 131:6312–6313. https://doi.org/10.1021/ja809352y
Deshpande RK, Minnaar JL, Telfer SG (2010) Thermolabile groups in metal–organic frameworks: suppression of network interpenetration, post-synthetic cavity expansion, and protection of reactive functional groups. Angew Chem Int Ed 49:4598–4602. https://doi.org/10.1002/anie.200905960
Kutzscher C, Nickerl G, Senkovska I, Bon V, Kaskel S (2016) Proline functionalized UiO-67 and UiO-68 type metal–organic frameworks showing reversed diastereoselectivity in aldol addition reactions. Chem Mater 28:2573–2580. https://doi.org/10.1021/acs.chemmater.5b04575
Brozek CK, Dinca M (2014) Cation exchange at the secondary building units of metal-organic frameworks. Chem Soc Rev 43:5456–5467. https://doi.org/10.1039/C4CS00002A
Evans JD, Sumby CJ, Doonan CJ (2014) Post-synthetic metalation of metal-organic frameworks. Chem Soc Rev 43:5933–5951. https://doi.org/10.1039/C4CS00076E
Horike S, Shimomura S, Kitagawa S (2009) Soft porous crystals. Nat Chem 1:695–704. https://doi.org/10.1038/nchem.444
Blake JA, Hill JS, Hubberstey P, Li W-S (1997) Rectangular grid two-dimensional sheets of copper(II) bridged by both co-ordinated and hydrogen bonded 4,4[prime or minute]-bipyridine (4,4[prime or minute]-bipy) in [Cu([small micro]-4,4[prime or minute]-bipy)(H2O)2(FBF3) 2][middle dot]4,4[prime or minute]-bipy. Dalton Trans:913–914. https://doi.org/10.1039/A700036G
Kitaura R, Fujimoto K, Noro S-i, Kondo M, Kitagawa S (2002) A pillared-layer coordination polymer network displaying hysteretic sorption: [Cu2(pzdc)2(dpyg)]n (pzdc= Pyrazine-2,3-dicarboxylate; dpyg=1,2-Di(4-pyridyl)glycol). Angew Chem Int Ed 41:133–135. https://doi.org/10.1002/1521-3773(20020104)41:1<133::aid-anie133>3.0.co;2-r
Li D, Kaneko K (2001) Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem Phys Lett 335:50–56. https://doi.org/10.1016/S0009-2614(00)01419-6
Schneemann A, Bon V, Schwedler I, Senkovska I, Kaskel S, Fischer RA (2014) Flexible metal-organic frameworks. Chem Soc Rev 43:6062–6096. https://doi.org/10.1039/c4cs00101j
Serre C, Millange F, Thouvenot C, Noguès M, Marsolier G, Louër D, Férey G (2002) Very large breathing effect in the first Nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy. J Am Chem Soc 124:13519–13526. https://doi.org/10.1021/ja0276974
Mellot-Draznieks C, Serre C, Surblé S, Audebrand N, Férey G (2005) Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. J Am Chem Soc 127:16273–16278. https://doi.org/10.1021/ja054900x
Klein N et al (2010) Monitoring adsorption-induced switching by (129)Xe NMR spectroscopy in a new metal-organic framework Ni2(2,6-ndc)2(dabco). Phys Chem Chem Phys 12:11778–11784. https://doi.org/10.1039/c003835k
Bon V et al (2015) Exceptional adsorption-induced cluster and network deformation in the flexible metal-organic framework DUT-8(Ni) observed by in situ X-ray diffraction and EXAFS. Phys Chem Chem Phys 17:17471–17479. https://doi.org/10.1039/C5CP02180D
Bureekaew S et al (2010) Control of interpenetration for tuning structural flexibility influences sorption properties. Angew Chem Int Ed 49:7660–7664. https://doi.org/10.1002/anie.201002259
Fairen-Jimenez D, Moggach SA, Wharmby MT, Wright PA, Parsons S, Düren T (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902. https://doi.org/10.1021/ja202154j
Krause S et al (2016) A pressure-amplifying framework material with negative gas adsorption transitions. Nature 532:348–352. https://doi.org/10.1038/nature17430
Coudert F-X (2015) Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem Mater 27:1905–1916. https://doi.org/10.1021/acs.chemmater.5b00046
Chang Z, Yang D-H, Xu J, Hu T-L, Bu X-H (2015) Flexible metal–organic frameworks: recent advances and potential applications. Adv Mater 27:5432–5441. https://doi.org/10.1002/adma.201501523
Sato H et al (2014) Self-accelerating CO sorption in a soft Nanoporous crystal. Science 343:167–170. https://doi.org/10.1126/science.1246423
Freund P, Senkovska I, Kaskel S (2017) Switchable conductive MOF–Nanocarbon composite coatings as threshold sensing architectures. ACS Appl Mater Interfaces 9:43782–43789. https://doi.org/10.1021/acsami.7b13924
Mason JA et al (2015) Methane storage in flexible metal–organic frameworks with intrinsic thermal management. Nature 527:357–361. https://doi.org/10.1038/nature15732
Bon V et al (2014) In situ observation of gating phenomena in the flexible porous coordination polymer Zn2(BPnDC)2(bpy) (SNU-9) in a combined diffraction and gas adsorption experiment. Inorg Chem 53:1513–1520. https://doi.org/10.1021/ic4024844
Park HJ, Suh MP (2010) Stepwise and hysteretic sorption of N2, O2, CO2, and H2 gases in a porous metal-organic framework [Zn2(BPnDC)2(bpy)]. Chem Commun 46:610–612. https://doi.org/10.1039/B913067E
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Bon, V., Senkovska, I., Kaskel, S. (2019). Metal-Organic Frameworks. In: Kaneko, K., Rodríguez-Reinoso, F. (eds) Nanoporous Materials for Gas Storage. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-3504-4_6
Download citation
DOI: https://doi.org/10.1007/978-981-13-3504-4_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-3503-7
Online ISBN: 978-981-13-3504-4
eBook Packages: EnergyEnergy (R0)