Advertisement

Bioimpedance Measurements on Human Neural Stem Cells as a Benchmark for the Development of Smart Mobile Biomedical Applications

Conference paper
  • 210 Downloads
Part of the IFMBE Proceedings book series (IFMBE, volume 72)

Abstract

Over the past 30 years, stem cell technologies matured from an attractive option to investigate neurodegenerative diseases to a possible paradigm shift in their treatment through the development of cell-based regenerative medicine (CRM). Implantable cell replacement therapies promise to completely restore function of neural structures possibly changing how we currently perceive the onset of these conditions. One of the major clinical hurdles facing the routine implementation of stem cell therapy is the limited and inconsistent benefit observed thus far. While unclear, numerous pre-clinical and a handful of clinical cell fate imaging studies point to poor cell retention and survival. Coupling the need to better understand these mechanisms while providing scalable approaches to monitor these treatments in both pre-clinical and clinical scenarios, we show a proof of concept bioimpedance electronic platform for the Agile development of smart and mobile biomedical applications like neural implants or highly portable monitoring devices.

Keywords

Electrical impedance spectroscopy (EIS) Bioimpedance Neural stem cells (NSCs) Proliferation Embedded system Mobile technologies 

Notes

Acknowledgment

This project has been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2016) under the Marie Skłodowska-Curie Innovative Training Network and Grant Agreement No.722779.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    McAdams, E.T., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16(3A), A1.  https://doi.org/10.1088/0967-3334/16/3a/001CrossRefGoogle Scholar
  2. 2.
    Grimnes, S., Martinsen, Ø.G.: Bioimpedance and Bioelectricity Basics, 3rd edn. Academic Press is an Imprint of Elsevier, London (2015)Google Scholar
  3. 3.
    Ronaghi, M., Erceg, S., Moreno-Manzano, V., et al.: Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28(1), 93–99 (2010).  https://doi.org/10.1002/stem.253CrossRefGoogle Scholar
  4. 4.
    Nguyen, P.K., Neofytou, E., Rhee, J.-W., et al.: Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 1(8), 953–962 (2016).  https://doi.org/10.1001/jamacardio.2016.2750CrossRefGoogle Scholar
  5. 5.
    Xiao, C., Luong, J.H.T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol. Prog. 19(3), 1000–1005 (2003).  https://doi.org/10.1021/bp025733xCrossRefGoogle Scholar
  6. 6.
    Krinke, D., Jahnke, H.-G., Mack, T.G.A., et al.: A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Biosens. Bioelectron. 26(1), 162–168 (2010).  https://doi.org/10.1016/j.bios.2010.06.002CrossRefGoogle Scholar
  7. 7.
    Hug, T.S.: Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev. Technol. 1(3), 479–488 (2003).  https://doi.org/10.1089/154065803322163795CrossRefGoogle Scholar
  8. 8.
    Jahnke, H.-G., Braesigk, A., Mack, T.G.A., et al.: Impedance spectroscopy based measurement system for quantitative and label-free real-time monitoring of tauopathy in hippocampal slice cultures. Biosens. Bioelectron. 32(1), 250–258 (2012).  https://doi.org/10.1016/j.bios.2011.12.026CrossRefGoogle Scholar
  9. 9.
    Haas, S., Jahnke, H.-G., Glass, M., et al.: Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab Chip 10(21), 2965–2971 (2010).  https://doi.org/10.1039/c0lc00008fCrossRefGoogle Scholar
  10. 10.
    Seidel, D., Obendorf, J., Englich, B., et al.: Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens. Bioelectron. 86, 277–286 (2016).  https://doi.org/10.1016/j.bios.2016.06.056CrossRefGoogle Scholar
  11. 11.
    Kumar, S.: Reducing complexity and cost for portable medical electronics through system on chip architectures (2010). https://www.cypress.com/file/102926/download. Accessed 09 Jan 2020
  12. 12.
    Saunders, M.: Software development models for PSoC 6 (2017). https://www.cypress.com/blog/technical/software-development-models-psoc-6. Accessed 09 Jan 2020
  13. 13.
    CORDIS: European Training Network for Cell-based Regenerative Medicine | Projects | H2020 | CORDIS | European Commission (2019). https://cordis.europa.eu/project/rcn/205439/factsheet/en. Accessed 28 Feb 2019
  14. 14.
    Villa, A., Liste, I., Courtois, E.T., et al.: Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp. Cell Res. 315(11), 1860–1874 (2009).  https://doi.org/10.1016/j.yexcr.2009.03.011CrossRefGoogle Scholar
  15. 15.
    Villa, A., Snyder, E.Y., Vescovi, A., et al.: Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161(1), 67–84 (2000).  https://doi.org/10.1006/exnr.1999.7237CrossRefGoogle Scholar
  16. 16.
    Tønnesen, J., Seiz, E.G., Ramos, M., et al.: Functional properties of the human ventral mesencephalic neural stem cell line hVM1. Exp. Neurol. 223(2), 653–656 (2010).  https://doi.org/10.1016/j.expneurol.2010.01.013CrossRefGoogle Scholar
  17. 17.
    Krabbe, C., Courtois, E., Jensen, P., et al.: Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension. J. Neurochem. 110(6), 1908–1920 (2009).  https://doi.org/10.1111/j.1471-4159.2009.06281.xCrossRefGoogle Scholar
  18. 18.
    Courtois, E.T., Castillo, C.G., Seiz, E.G., et al.: In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL. J. Biol. Chem. 285(13), 9881–9897 (2010).  https://doi.org/10.1074/jbc.M109.054312CrossRefGoogle Scholar
  19. 19.
    Hassan, Y.M., Caviglia, C., Hemanth, S., et al.: High temperature SU-8 pyrolysis for fabrication of carbon electrodes. J. Anal. Appl. Pyrolysis 125, 91–99 (2017).  https://doi.org/10.1016/j.jaap.2017.04.015CrossRefGoogle Scholar
  20. 20.
    Witzel, F., Fritsche-Guenther, R., Lehmann, N., et al.: Analysis of impedance-based cellular growth assays. Bioinformatics 31(16), 2705–2712 (2015).  https://doi.org/10.1093/bioinformatics/btv216CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Technical University of Denmark, DTU BioengineeringKongens LyngbyDenmark
  3. 3.Technical University of Denmark, DTU NanolabKongens LyngbyDenmark
  4. 4.Department of Clinical and Biomedical EngineeringOslo University HospitalOsloNorway
  5. 5.Department of Molecular Neurobiology, Center of Molecular Biology ‘Severo Ochoa’Universidad Autónoma de MadridMadridSpain

Personalised recommendations