Skip to main content

Bioimpedance Measurements on Human Neural Stem Cells as a Benchmark for the Development of Smart Mobile Biomedical Applications

  • Conference paper
  • First Online:
  • 463 Accesses

Part of the book series: IFMBE Proceedings ((IFMBE,volume 72))

Abstract

Over the past 30 years, stem cell technologies matured from an attractive option to investigate neurodegenerative diseases to a possible paradigm shift in their treatment through the development of cell-based regenerative medicine (CRM). Implantable cell replacement therapies promise to completely restore function of neural structures possibly changing how we currently perceive the onset of these conditions. One of the major clinical hurdles facing the routine implementation of stem cell therapy is the limited and inconsistent benefit observed thus far. While unclear, numerous pre-clinical and a handful of clinical cell fate imaging studies point to poor cell retention and survival. Coupling the need to better understand these mechanisms while providing scalable approaches to monitor these treatments in both pre-clinical and clinical scenarios, we show a proof of concept bioimpedance electronic platform for the Agile development of smart and mobile biomedical applications like neural implants or highly portable monitoring devices.

A. B. Cunha and C. Schuelke—Both authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McAdams, E.T., Jossinet, J.: Tissue impedance: a historical overview. Physiol. Meas. 16(3A), A1. https://doi.org/10.1088/0967-3334/16/3a/001

    Article  Google Scholar 

  2. Grimnes, S., Martinsen, Ø.G.: Bioimpedance and Bioelectricity Basics, 3rd edn. Academic Press is an Imprint of Elsevier, London (2015)

    Google Scholar 

  3. Ronaghi, M., Erceg, S., Moreno-Manzano, V., et al.: Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells 28(1), 93–99 (2010). https://doi.org/10.1002/stem.253

    Article  Google Scholar 

  4. Nguyen, P.K., Neofytou, E., Rhee, J.-W., et al.: Potential strategies to address the major clinical barriers facing stem cell regenerative therapy for cardiovascular disease: a review. JAMA Cardiol. 1(8), 953–962 (2016). https://doi.org/10.1001/jamacardio.2016.2750

    Article  Google Scholar 

  5. Xiao, C., Luong, J.H.T.: On-line monitoring of cell growth and cytotoxicity using electric cell-substrate impedance sensing (ECIS). Biotechnol. Prog. 19(3), 1000–1005 (2003). https://doi.org/10.1021/bp025733x

    Article  Google Scholar 

  6. Krinke, D., Jahnke, H.-G., Mack, T.G.A., et al.: A novel organotypic tauopathy model on a new microcavity chip for bioelectronic label-free and real time monitoring. Biosens. Bioelectron. 26(1), 162–168 (2010). https://doi.org/10.1016/j.bios.2010.06.002

    Article  Google Scholar 

  7. Hug, T.S.: Biophysical methods for monitoring cell-substrate interactions in drug discovery. Assay Drug Dev. Technol. 1(3), 479–488 (2003). https://doi.org/10.1089/154065803322163795

    Article  Google Scholar 

  8. Jahnke, H.-G., Braesigk, A., Mack, T.G.A., et al.: Impedance spectroscopy based measurement system for quantitative and label-free real-time monitoring of tauopathy in hippocampal slice cultures. Biosens. Bioelectron. 32(1), 250–258 (2012). https://doi.org/10.1016/j.bios.2011.12.026

    Article  Google Scholar 

  9. Haas, S., Jahnke, H.-G., Glass, M., et al.: Real-time monitoring of relaxation and contractility of smooth muscle cells on a novel biohybrid chip. Lab Chip 10(21), 2965–2971 (2010). https://doi.org/10.1039/c0lc00008f

    Article  Google Scholar 

  10. Seidel, D., Obendorf, J., Englich, B., et al.: Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays. Biosens. Bioelectron. 86, 277–286 (2016). https://doi.org/10.1016/j.bios.2016.06.056

    Article  Google Scholar 

  11. Kumar, S.: Reducing complexity and cost for portable medical electronics through system on chip architectures (2010). https://www.cypress.com/file/102926/download. Accessed 09 Jan 2020

  12. Saunders, M.: Software development models for PSoC 6 (2017). https://www.cypress.com/blog/technical/software-development-models-psoc-6. Accessed 09 Jan 2020

  13. CORDIS: European Training Network for Cell-based Regenerative Medicine | Projects | H2020 | CORDIS | European Commission (2019). https://cordis.europa.eu/project/rcn/205439/factsheet/en. Accessed 28 Feb 2019

  14. Villa, A., Liste, I., Courtois, E.T., et al.: Generation and properties of a new human ventral mesencephalic neural stem cell line. Exp. Cell Res. 315(11), 1860–1874 (2009). https://doi.org/10.1016/j.yexcr.2009.03.011

    Article  Google Scholar 

  15. Villa, A., Snyder, E.Y., Vescovi, A., et al.: Establishment and properties of a growth factor-dependent, perpetual neural stem cell line from the human CNS. Exp. Neurol. 161(1), 67–84 (2000). https://doi.org/10.1006/exnr.1999.7237

    Article  Google Scholar 

  16. Tønnesen, J., Seiz, E.G., Ramos, M., et al.: Functional properties of the human ventral mesencephalic neural stem cell line hVM1. Exp. Neurol. 223(2), 653–656 (2010). https://doi.org/10.1016/j.expneurol.2010.01.013

    Article  Google Scholar 

  17. Krabbe, C., Courtois, E., Jensen, P., et al.: Enhanced dopaminergic differentiation of human neural stem cells by synergistic effect of Bcl-xL and reduced oxygen tension. J. Neurochem. 110(6), 1908–1920 (2009). https://doi.org/10.1111/j.1471-4159.2009.06281.x

    Article  Google Scholar 

  18. Courtois, E.T., Castillo, C.G., Seiz, E.G., et al.: In vitro and in vivo enhanced generation of human A9 dopamine neurons from neural stem cells by Bcl-XL. J. Biol. Chem. 285(13), 9881–9897 (2010). https://doi.org/10.1074/jbc.M109.054312

    Article  Google Scholar 

  19. Hassan, Y.M., Caviglia, C., Hemanth, S., et al.: High temperature SU-8 pyrolysis for fabrication of carbon electrodes. J. Anal. Appl. Pyrolysis 125, 91–99 (2017). https://doi.org/10.1016/j.jaap.2017.04.015

    Article  Google Scholar 

  20. Witzel, F., Fritsche-Guenther, R., Lehmann, N., et al.: Analysis of impedance-based cellular growth assays. Bioinformatics 31(16), 2705–2712 (2015). https://doi.org/10.1093/bioinformatics/btv216

    Article  Google Scholar 

Download references

Acknowledgment

This project has been funded by the European Union Horizon 2020 Programme (H2020-MSCA-ITN-2016) under the Marie Skłodowska-Curie Innovative Training Network and Grant Agreement No.722779.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to André B. Cunha or Christin Schuelke .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cunha, A.B. et al. (2020). Bioimpedance Measurements on Human Neural Stem Cells as a Benchmark for the Development of Smart Mobile Biomedical Applications. In: Bertemes-Filho, P. (eds) 17th International Conference on Electrical Bioimpedance. ICEBI 2019. IFMBE Proceedings, vol 72. Springer, Singapore. https://doi.org/10.1007/978-981-13-3498-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3498-6_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3497-9

  • Online ISBN: 978-981-13-3498-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics