Skip to main content

Review on Indoor Channel Characterization for Future Generation Wireless Communications

  • Conference paper
  • First Online:
Advances in Communication, Devices and Networking

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 537))

Abstract

The market demand for high quality-of-service Internet/data access in indoors is increasing drastically because of the increase in the smart device users, thus leading to the requirement of high data rate support. The current technologies serve mainly in the outdoor scenarios where the presence of clutter, multipath is comparatively lesser than in indoor. Therefore, huge challenge is to satisfy users demand even in indoors, thus fulfilling the motto “anywhere, anytime” which is only possible by properly studying the nature of the propagation channel so as to mitigate the channel effect to the maximum extent with the adaptation of proper equalization technique. The aim of this paper is to access the various possibilities adapted worldwide to achieve the above goal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zavala AA. Indoor wireless communications

    Google Scholar 

  2. Ryu J, Partyka A, Subramanian S, Sampath A (2015) Study of the indoor millimeter wavelength channel. In: 2015 IEEE global communication conference GLOBECOM 2015, pp 1–5

    Google Scholar 

  3. Merwaday A, Rupasinghe N, Güvenç I, Saad W, Yuksel M (2014) USRP-based indoor channel sounding for D2D and multi-hop communications. In: 2014 IEEE 15th annual IEEE wireless and microwave technology conference WAMICON 2014

    Google Scholar 

  4. Anderson CR, Rappaport TS, Bae K, Verstak A, Ramakrishnan N, Tranter WH, Shaffer CA, Watson LT (2002) In-building wideband multipath characteristics at 2.5 and 60 GHz. In: Proceedings of the IEEE 56th vehicle and technology conference, vol 1, pp 97–101

    Google Scholar 

  5. Peng B, Rey S, Kürner T (2016) Channel characteristics study for future indoor millimeter and submillimeter wireless communications. In: 10th European conference on antennas and propagation, vol 110, pp 1–5 (2016)

    Google Scholar 

  6. Ma J, Shrestha R, Moeller L, Mittleman DM (2018) Invited article: channel performance for indoor and outdoor terahertz wireless links. APL Photonics 3:051601

    Article  Google Scholar 

  7. Masa-Campos JL, Lalueza-Mayordomo JM, Taha-Ahmed B (2010) RF propagation in indoor environment at WiMAX band of 3.5 GHz. J Electromagn Waves Appl 24:2495–2508

    Article  Google Scholar 

  8. Maccartney GR, Yan H, Sun S, Rappaport TS (2017) A flexible wideband millimeter-wave channel sounder with local area and NLOS to LOS transition measurements. IEEE Int Conf Commun 1–7 (2017)

    Google Scholar 

  9. Maccartney GR, Deng S, Sun S (2015) NYU WIRELESS TR 2015-002 technical report indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks, vol 3

    Google Scholar 

  10. Ryan J, Maccartney GR, Rappaport TS (2017) Indoor office wideband penetration loss measurements at 73 GHz. In: 2017 ieee international conference on communication workshop, ICC workshop, pp 228–233

    Google Scholar 

  11. Koymen OH, Partyka A, Subramanian S, Li J (2015) Indoor mm-wave channel measurements: comparative study of 2.9 GHz and 29 GHz. In: 2015 IEEE global communication conference GLOBECOM 2015, pp 7–12

    Google Scholar 

  12. Papazian PB, Lo Y (1999) Seasonal variability of a local multi-point distribution service radio channel. In: 1999 IEEE radio wireless conference, RAWCON 99 (Cat. No. 99EX292), pp 211–214

    Google Scholar 

  13. Chavero M, Polo V, Ramos F, Marti J (1992) Impact of vegetation on the performance of 28 GHz LMDS transmission, pp 35–40

    Google Scholar 

  14. Rappaport TS, Deng S (2015) 73 GHz wideband millimeter-wave foliage and ground reflection measurements and models. In: 2015 IEEE international conference on communication workshop, ICCW 2015, pp 1238–1243

    Google Scholar 

  15. Akdeniz MR, Liu Y, Samimi MK, Sun S, Rangan S, Rappaport TS, Erkip E (2014) Millimeter wave channel modeling and cellular capacity evaluation. IEEE J Sel Areas Commun 32:1164–1179

    Article  Google Scholar 

  16. Sun S, Rappaport TS, Heath RW, Nix A, Rangan S (2014) MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both? IEEE Commun Mag 52:110–121

    Article  Google Scholar 

  17. Kristem V, Sangodoyin S, Bas CU, Kaske M, Lee J, Schneider C, Sommerkorn G, Zhang CJ, Thoma RS, Molisch AF (2017) 3D MIMO outdoor-to-indoor propagation channel measurement. IEEE Trans Wirel Commun 16:4600–4613

    Article  Google Scholar 

  18. Sun S, Rappaport TS (2017) Millimeter wave MIMO channel estimation based on adaptive compressed sensing

    Google Scholar 

  19. Sun S, Maccartney GR, Rappaport TS (2017) A novel millimeter-wave channel simulator and applications for 5G wireless communications. IEEE Int Conf Commun 10

    Google Scholar 

  20. Wang Y, Lu W, Zhu H (2010) Experimental study on indoor channel model for wireless sensor networks and internet of things r l. Antenna 624–627

    Google Scholar 

  21. Ko J, Lee SU, Kim YS, Park DJ (2016) Measurements and analyses of 28 GHz indoor channel propagation based on a synchronized channel sounder using directional antennas. J Electromagn Waves Appl 30:2039–2054

    Article  Google Scholar 

  22. Al-Samman AM, Abd Rahman T, Azmi MH (2018) Indoor corridor wideband radio propagation measurements and channel models for 5G millimeter wave wireless communications at 19 GHz, 28 GHz, and 38 GHz Bands. Wirel Commun Mob Comput 2018

    Google Scholar 

  23. Aihua H, Zhongliang D, Yao Z (2017) Study on the method of indoor wireless channel characteristic measurement and analysis based on vector network analyzer

    Google Scholar 

  24. Sulyman A, Nassar A, Samimi M, Maccartney G, Rappaport T, Alsanie A (2014) Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Commun Mag 52:78–86

    Article  Google Scholar 

  25. Sulyman AI, Alwarafy A, MacCartney GR, Rappaport TS, Alsanie A (2016) Directional radio propagation path loss models for millimeter-wave wireless networks in the 28-, 60-, and 73-GHz bands. IEEE Trans Wirel Commun 15:6939–6947

    Article  Google Scholar 

  26. Rappaport TS, MacCartney G, Samimi M, Sun S (2015) Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Trans Commun 1–1

    Google Scholar 

  27. Bou-El-Harmel A, Benbassou A, Belkadid J, Mechatte N (2017) Effect of quasi-isotropic antenna orientation on indoor multipath propagation characteristics in RSN applications. Int J Antennas Propag 2017

    Google Scholar 

  28. Zhang M, Polese M, Mezzavilla M, Rangan S, Zorzi M (2017) ns-3 implementation of the 3GPP MIMO channel model for frequency spectrum above 6 GHz

    Google Scholar 

  29. MacCartney GR, Rappaport TS (2017) Rural macrocell path loss models for millimeter wave wireless communications. IEEE J Sel Areas Commun 35:1663–1677

    Article  Google Scholar 

  30. MacCartney GR, Rappaport TS (2017) A flexible millimeter-wave channel sounder with absolute timing. IEEE J Sel Areas Commun 35:1402–1418

    Article  Google Scholar 

  31. Martinez-Ingles MT, Gaillot DP, Pascual-Garcia J, Molina-Garcia-Pardo JM, Rodríguez JV, Rubio L, Juan-Llácer L (2016) Channel sounding and indoor radio channel characteristics in the W-band. Eurasip J Wirel Commun Netw 2016:1–8

    Article  Google Scholar 

  32. Jagannatham AK, Erceg VO (2004) MIMO indoor WLAN channel measurements and parameter modeling at 5.25 GHz. In: IEEE 60th vehicle technology conference 2004, VTC2004-Fall, vol 1, pp 106–110

    Google Scholar 

  33. Sun S, Yan H, Maccartney GR, Rappaport TS (2017) Millimeter wave small-scale spatial statistics in an urban microcell scenario. IEEE Int Conf, Commun

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyasree Bera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bera, S., Sarkar, S.K. (2019). Review on Indoor Channel Characterization for Future Generation Wireless Communications. In: Bera, R., Sarkar, S., Singh, O., Saikia, H. (eds) Advances in Communication, Devices and Networking. Lecture Notes in Electrical Engineering, vol 537. Springer, Singapore. https://doi.org/10.1007/978-981-13-3450-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3450-4_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3449-8

  • Online ISBN: 978-981-13-3450-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics