Advertisement

Timing-of-Delivery Prediction Model to Visualize Delivery Trends for Pos Laju Malaysia by Machine Learning Techniques

  • Jo Wei QuahEmail author
  • Chin Hai AngEmail author
  • Regupathi DivakarEmail author
  • Rosnah IdrusEmail author
  • Nasuha Lee AbdullahEmail author
  • XinYing ChewEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 937)

Abstract

The increasing trend in online shopping urges the need of continuous enhancing and improving user experience in many aspects and on-time delivery of goods is one of the key area. This paper explores the adoption of machine learning in predicting late delivery of goods on Malaysia national courier service named Poslaju. The prediction model also enables the visualization of the delivery trends for Poslaju Malaysia. Meanwhile, data extraction, transformation, experimental setup and performance comparison of various machine learning methods will be discussed in this paper.

Keywords

Supervised machine learning Naïve Bayes Decision tree K-nearest neighbors Poslaju 

Notes

Acknowledgement

The authors would like to thank Universiti Sains Malaysia for supporting the publication of this paper through USM Research University Grant scheme 1001/PKOMP/814254.

References

  1. 1.
    E-commerce Trends: 147 Stats Revealing How Modern Customers Shop in 2017. https://www.bigcommerce.com/blog/ecommerce-trends/. Accessed 1 Aug 2018
  2. 2.
    Malaysia online shopping trends in 2017. http://news.ecinsider.my/2016/12/5-malaysia-online-shopping-trends-2017.html. Accessed 1 Aug 2018
  3. 3.
    Compares Malaysia E-commerce Marketplaces. https://www.webshaper.com.my/compare-ecommerce-marketplaces/. Accessed 1 Aug 2018
  4. 4.
    Pappas, I.O., Kourouthanassis, P.E., Giannakos, M.N., Lekakos, G.: The interplay of online shopping motivations and experiential factors on personalized e-commerce: a complexity theory approach. Telematics Inform. 34(5), 730–742 (2017)CrossRefGoogle Scholar
  5. 5.
    Cao, Y., Ajjan, H., Hong, P.: Post-purchase shipping and customer service experiences in online shopping and their impact on customer satisfaction: an empirical study with comparison. Asia Pac. J. Mark. Logist. 30, 400–412 (2018)Google Scholar
  6. 6.
    Kuoppamäki, S.M., Taipale, S., Wilska, T.A.: The use of mobile technology for online shopping and entertainment among older adults in Finland. Telematics Inform. 34(4), 110–117 (2017)CrossRefGoogle Scholar
  7. 7.
    Kawaf, F., Tagg, S.: The construction of online shopping experience: a repertory grid approach. Comput. Hum. Behav. 72(C), 222–232 (2017)CrossRefGoogle Scholar
  8. 8.
    Wang, M., Qu, H.: Review of the research on the impact of online shopping return policy on consumer behavior. J. Bus. Adm. Res. 6(2), 15 (2017)Google Scholar
  9. 9.
    Poslaju. http://www.poslaju.com.my/. Accessed 1 Aug 2018
  10. 10.
    Extract, Transform and Load (ETL), Wikipedia. https://en.wikipedia.org/wiki/Extract,_transform,_load. Accessed 1 Aug 2018
  11. 11.
    Yin, S., Kaynak, O.: Big data for modern industry: challenges and trends [point of view]. Proc. IEEE 103(2), 143–146 (2015)CrossRefGoogle Scholar
  12. 12.
    Requests: HTTP for Humans. http://docs.python-requests.org/en/master/. Accessed 1 Aug 2018
  13. 13.
    Beautiful Soup. https://www.crummy.com/software/BeautifulSoup/. Accessed 1 Aug 2018
  14. 14.
    Google distance matrix API (web services). https://developers.google.com/maps/documentation/distance-matrix/intro. Accessed 1 Aug 2018
  15. 15.
    Scikit-learn. http://scikit-learn.org/. Accessed 1 Aug 2018
  16. 16.
    Occam’s Razor, Wikipedia. https://en.wikipedia.org/wiki/Occam%27s_razor. Accessed 1 Aug 2018
  17. 17.
    Naïve Bayes Classifier, Wikipedia. https://en.wikipedia.org/wiki/Naive_Bayes_classifier. Accessed 1 Aug 2018
  18. 18.
    Shinde, T.A., Prasad, J.R.: IoT based animal health monitoring with Naive Bayes classification. IJETT 1(2) (2017)Google Scholar
  19. 19.
    Chen, X., Zeng, G., Zhang, Q., Chen, L., Wang, Z.: Classification of medical consultation text using mobile agent system based on Naïve Bayes classifier. In: Long, K., Leung, V.C.M., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds.) 5GWN 2017. LNICST, vol. 211, pp. 371–384. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-72823-0_35CrossRefGoogle Scholar
  20. 20.
    Wu, J., Zhang, G., Ren, Y., Zhang, X., Yang, Q.: Weighted local Naive Bayes link prediction. J. Inf. Process. Syst. 13(4), 914–927 (2017)Google Scholar
  21. 21.
    Krishnan, H., Elayidom, M.S., Santhanakrishnan, T.: Emotion detection of tweets using Naïve Bayes classifier. Emotion, Int. J. Eng. Technol. Sci. Res. 4(11) (2017)Google Scholar
  22. 22.
    Mane, D.S., Gite, B.B.: Brain tumor segmentation using fuzzy c-means and k-means clustering and its area calculation and disease prediction using Naive-Bayes algorithm. Brain, Int. J. Eng. Technol. Sci. Res. 6(11) (2017)Google Scholar
  23. 23.
    Sim, D.Y.Y., Teh, C.S., Ismail, A.I.: Improved boosted decision tree algorithms by adaptive apriori and post-pruning for predicting obstructive sleep apnea. Adv. Sci. Lett. 24(3), 1680–1684 (2018)CrossRefGoogle Scholar
  24. 24.
    Tayefi, M., et al.: hs-CRP is strongly associated with coronary heart disease (CHD): a data mining approach using decision tree algorithm. Comput. Methods Programs Biomed. 141(C), 105–109 (2017)CrossRefGoogle Scholar
  25. 25.
    Li, Y., Jiang, Z.L., Yao, L., Wang, X., Yiu, S.M., Huang, Z.: Outsourced privacy-preserving C4.5 decision tree algorithm over horizontally and vertically partitioned dataset among multiple parties. Clust. Comput., 1–13 (2017)Google Scholar
  26. 26.
    Yang, C.H., Wu, K.C., Chuang, L.Y., Chang, H.W.: Decision tree algorithm-generated single-nucleotide polymorphism barcodes of rbcL genes for 38 Brassicaceae species tagging. Evol. Bioinform. Online 14, 1176934318760856 (2018)Google Scholar
  27. 27.
    Zhao, H., Li, X.: A cost sensitive decision tree algorithm based on weighted class distribution with batch deleting attribute mechanism. Inf. Sci. 378(C), 303–316 (2017)CrossRefGoogle Scholar
  28. 28.
    Decision tree, Wikipedia. https://en.wikipedia.org/wiki/Decision_tree. Accessed 1 Aug 2018
  29. 29.
    k-nearest neighbors algorithm, Wikipedia. https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm. Accessed 1 Aug 2018
  30. 30.
    A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm. https://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/. Accessed 1 Aug 2018
  31. 31.
    Mohammed, M.A., et al.: Solving vehicle routing problem by using improved K-nearest neighbor algorithm for best solution. J. Comput. Sci. 21, 232–240 (2017)CrossRefGoogle Scholar
  32. 32.
    Ha, D., Ahmed, U., Pyun, H., Lee, C.J., Baek, K.H., Han, C.: Multi-mode operation of principal component analysis with k-nearest neighbor algorithm to monitor compressors for liquefied natural gas mixed refrigerant processes. Comput. Chem. Eng. 106, 96–105 (2017)CrossRefGoogle Scholar
  33. 33.
    Chen, Y., Hao, Y.: A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Syst. Appl. 80(C), 340–355 (2017)CrossRefGoogle Scholar
  34. 34.
    García-Pedrajas, N., del Castillo, J.A.R., Cerruela-García, G.: A proposal for local k values for k-nearest neighbor rule. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 470–475 (2017)CrossRefGoogle Scholar
  35. 35.
    Bui, D.T., Nguyen, Q.P., Hoang, N.D., Klempe, H.: A novel fuzzy K-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using GIS. Landslides 14(1), 1–17 (2017)CrossRefGoogle Scholar
  36. 36.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations