Skip to main content

Feature and Architecture Selection on Deep Feedforward Network for Roll Motion Time Series Prediction

  • Conference paper
  • First Online:
Soft Computing in Data Science (SCDS 2018)

Abstract

The neural architecture and the input features are very substantial in order to build an artificial neural network (ANN) model that is able to perform a good prediction. The architecture is determined by several hyperparameters including the number of hidden layers, the number of nodes in each hidden layer, the series length, and the activation function. In this study, we present a method to perform feature selection and architecture selection of ANN model for time series prediction. Specifically, we explore a deep learning or deep neural network (DNN) model, called deep feedforward network, an ANN model with multiple hidden layers. We use two approaches for selecting the inputs, namely PACF based inputs and ARIMA based inputs. Three activation functions used are logistic sigmoid, tanh, and ReLU. The real dataset used is time series data called roll motion of a Floating Production Unit (FPU). Root mean squared error (RMSE) is used as the model selection criteria. The results show that the ARIMA based 3 hidden layers DNN model with ReLU function outperforms with remarkable prediction accuracy among other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks. Int. J. Forecast. 14, 35–62 (1998)

    Article  Google Scholar 

  2. Cybenko, G.: Approximation by superpositions of a sigmoidal function. Math. Control Sig. Syst. 2, 303–314 (1989)

    Article  MathSciNet  Google Scholar 

  3. Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks. Neural Netw. 2, 183–192 (1989)

    Article  Google Scholar 

  4. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  5. Chen, Y., He, K., Tso, G.K.F.: Forecasting crude oil prices: a deep learning based model. Proced. Comput. Sci. 122, 300–307 (2017)

    Article  Google Scholar 

  6. Liu, L., Chen, R.C.: A novel passenger flow prediction model using deep learning methods. Transp. Res. Part C: Emerg. Technol. 84, 74–91 (2017)

    Article  Google Scholar 

  7. Qin, M., Li, Z., Du, Z.: Red tide time series forecasting by combining ARIMA and deep belief network. Knowl.-Based Syst. 125, 39–52 (2017)

    Article  Google Scholar 

  8. Qiu, X., Ren, Y., Suganthan, P.N., Amaratunga, G.A.J.: Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 54, 246–255 (2017)

    Article  Google Scholar 

  9. Voyant, C., et al.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy. 105, 569–582 (2017)

    Article  Google Scholar 

  10. Zhao, Y., Li, J., Yu, L.: A deep learning ensemble approach for crude oil price forecasting. Energy Econ. 66, 9–16 (2017)

    Article  Google Scholar 

  11. Hui, L.H., Fong, P.Y.: A numerical study of ship’s rolling motion. In: Proceedings of the 6th IMT-GT Conference on Mathematics, Statistics and its Applications, pp. 843–851 (2010)

    Google Scholar 

  12. Nicolau, V., Palade, V., Aiordachioaie, D., Miholca, C.: Neural network prediction of the roll motion of a ship for intelligent course control. In: Apolloni, B., Howlett, Robert J., Jain, L. (eds.) KES 2007. LNCS (LNAI), vol. 4694, pp. 284–291. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74829-8_35

    Chapter  Google Scholar 

  13. Zhang, X.L., Ye, J.W.: An experimental study on the prediction of the ship motions using time-series analysis. In: The Nineteenth International Offshore and Polar Engineering Conference (2009)

    Google Scholar 

  14. Khan, A., Bil, C., Marion, K., Crozier, M.: Real time prediction of ship motions and attitudes using advanced prediction techniques. In: Congress of the International Council of the Aeronautical Sciences, pp. 1–10 (2004)

    Google Scholar 

  15. Wang, Y., Chai, S., Khan, F., Nguyen, H.D.: Unscented Kalman Filter trained neural networks based rudder roll stabilization system for ship in waves. Appl. Ocean Res. 68, 26–38 (2017)

    Article  Google Scholar 

  16. Yin, J.C., Zou, Z.J., Xu, F.: On-line prediction of ship roll motion during maneuvering using sequential learning RBF neural networks. Ocean Eng. 61, 139–147 (2013)

    Article  Google Scholar 

  17. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing. 50, 159–175 (2003)

    Article  Google Scholar 

  18. Makridakis, S., Wheelwright, S.C., Hyndman, R.J.: Forecasting: Methods and Applications. Wiley, Hoboken (2008)

    Google Scholar 

  19. Wei, W.W.S.: Time Series Analysis: Univariate and Multivariate Methods. Pearson Addison Wesley, Boston (2006)

    MATH  Google Scholar 

  20. Tsay, R.S.: Analysis of Financial Time Series. Wiley, Hoboken (2002)

    Book  Google Scholar 

  21. Durbin, J.: The fitting of time-series models. Revue de l’Institut Int. de Statistique/Rev. Int. Stat. Inst. 28, 233 (1960)

    Google Scholar 

  22. Levinson, N.: The wiener (root mean square) error criterion in filter design and prediction. J. Math. Phys. 25, 261–278 (1946)

    Article  MathSciNet  Google Scholar 

  23. Liang, F.: Bayesian neural networks for nonlinear time series forecasting. Stat. Comput. 15, 13–29 (2005)

    Article  MathSciNet  Google Scholar 

  24. Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)

    MATH  Google Scholar 

  25. Fausett, L.: Fundamentals of Neural Networks: Architectures, Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River (1994)

    MATH  Google Scholar 

  26. El-Telbany, M.E.: What quantile regression neural networks tell us about prediction of drug activities. In: 2014 10th International Computer Engineering Conference (ICENCO), pp. 76–80. IEEE (2014)

    Google Scholar 

  27. Taylor, J.W.: A quantile regression neural network approach to estimating the conditional density of multiperiod returns. J. Forecast. 19, 299–311 (2000)

    Article  Google Scholar 

  28. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. In: Mira, J., Sandoval, F. (eds.) IWANN 1995. LNCS, vol. 930, pp. 195–201. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59497-3_175

    Chapter  Google Scholar 

  29. Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1, 111–122 (2011)

    Google Scholar 

  30. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning. pp. 807–814. Omnipress, Haifa (2010)

    Google Scholar 

  31. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  32. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  33. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22, 443–473 (2006)

    Article  Google Scholar 

  34. Fuller, W.A.: Introduction to Statistical Time Series. Wiley, Hoboken (2009)

    Google Scholar 

  35. Phillips, P.C.B., Perron, P.: Testing for a Unit Root in Time Series Regression. Biometrika 75, 335 (1988)

    Article  MathSciNet  Google Scholar 

  36. Hobijn, B., Franses, P.H., Ooms, M.: Generalizations of the KPSS-test for stationarity. Stat. Neerl. 58, 483–502 (2004)

    Article  MathSciNet  Google Scholar 

  37. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econ. 54, 159–178 (1992)

    Article  Google Scholar 

  38. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification. Presented at the (2003)

    Google Scholar 

  39. Gensler, A., Henze, J., Sick, B., Raabe, N.: Deep Learning for solar power forecasting — an approach using autoencoder and LSTM neural networks. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002858–002865. IEEE (2016)

    Google Scholar 

  40. Ryu, S., Noh, J., Kim, H.: Deep neural network based demand side short term load forecasting. In: 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 308–313. IEEE (2016)

    Google Scholar 

Download references

Acknowledgements

This research was supported by ITS under the scheme of “Penelitian Pemula” No. 1354/PKS/ITS/2018. The authors thank to the Head of LPPTM ITS for funding and to the referees for the useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Novri Suhermi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suhermi, N., Suhartono, Rahayu, S.P., Prastyasari, F.I., Ali, B., Fachruddin, M.I. (2019). Feature and Architecture Selection on Deep Feedforward Network for Roll Motion Time Series Prediction. In: Yap, B., Mohamed, A., Berry, M. (eds) Soft Computing in Data Science. SCDS 2018. Communications in Computer and Information Science, vol 937. Springer, Singapore. https://doi.org/10.1007/978-981-13-3441-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3441-2_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3440-5

  • Online ISBN: 978-981-13-3441-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics