Advertisement

Visualization of Frequently Changed Patterns Based on the Behaviour of Dung Beetles

  • Israel Edem Agbehadji
  • Richard MillhamEmail author
  • Surendra Thakur
  • Hongji Yang
  • Hillar Addo
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 937)

Abstract

Nature serves as a source of motivation for the development of new approaches to solve real life problems such as minimizing the computation time on visualization of frequently changed patterns from datasets. An approach adopted is the use of evolutionary algorithm based on swarm intelligence. This evolutionary algorithm is a computational approach that is based on the characteristics of dung beetles in moving dung with limited computational power. The contribution of this paper is the mathematical formulation of the unique characteristics of dung beetles (that is, path integration with replusion and attraction of trace, dance during orientation and ball rolling on straight line) in creating imaginary homes after displacement of its food (dung) source. The mathematical formulation is translated into an algorithmic structure that search for the best possible path and display patterns using simple two dimensional view. The computational time and optimal value are the techniques to select the best visualization algorithm (between the proposed dung beetle algorithm and comparative algorithms –that is Bee and ACO). The analysis shows that dung beetle algorithm has mean computational time of 0.510, Bee has 2.189 and ACO for data visualization has 0.978. While, the mean optimal value for bung beetle is 0.000117, Bee algorithm is 2.46E−08 and ACO for data visualization is 6.73E−13. The results indicates that dung beetle algorithm uses minimum computation time for data visualization.

Keywords

Dung beetle Data visualization Bioinspired Frequently changed patterns Path integration 

References

  1. 1.
    Ward, M., Grinstein, G., Keim, D.: Interactive Data Visualization: Foundations, Techniques, and Application. A K Peters/CRC Press (2010)Google Scholar
  2. 2.
    Wang, L, Wang, G., Alexander, C.A.: Big data and visualization: methods, challenges and technology progress. Digit. Technol. 1(1), 33–38 (2015). http://pubs.sciepub.com/dt/1/1/7. Accessed 26 June 2018
  3. 3.
    Keim, D.A., Bergeron, R.D., Pickett, R.M.: Test Data Sets for Evaluating Data Visualization Techniques. (1994). https://pdfs.semanticscholar.org/7959/fd04a4f0717426ce8a6512596a0de1b99d18.pdf
  4. 4.
    Choy, J., Chawla, V., Whitman, L.: Data visualization techniques: from basics to big data with SAS visual analytics. (2011). https://www.slideshare.net/AllAnalytics/data-visualization-techniques. Accessed 20 Apr 2018
  5. 5.
    Keim, D.: Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans. Vis. Comput. Graph. 6(1), 59–78 (2000)CrossRefGoogle Scholar
  6. 6.
    Keim, D. A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8(1) (2002)Google Scholar
  7. 7.
    Leung, C.K., Kononov, V.V., Pazdor, A.G.M., Jiang, F.: PyramidViz: visual analytics and big data visualization of frequent patterns. In: IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (2016)Google Scholar
  8. 8.
    Moere, A.V., Clayden, J.J., Dong, A.: Data clustering and visualization using cellular automata ants. In: Sattar, A., Kang, B.-H. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 826–836. Springer, Heidelberg (2006).  https://doi.org/10.1007/11941439_87CrossRefGoogle Scholar
  9. 9.
    Vande Moere, A., Lau, A.: In-formation flocking: an approach to data visualization using multi-agent formation behavior. In: Randall, M., Abbass, H.A., Wiles, J. (eds.) ACAL 2007. LNCS (LNAI), vol. 4828, pp. 292–304. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76931-6_26CrossRefGoogle Scholar
  10. 10.
    Marghescu, D.: Evaluating Multidimensional Visualization Techniques in Data Mining Tasks. (2008). http://www.doria.fi/bitstream/handle/10024/69974/MarghescuDorina.pdf?sequence=3&isAllowed=y. Accessed 02 Apr 2018
  11. 11.
    Card, S.K., Mackinlay, J.D., Shneiderman, B.: Readings in Information Visualization - Using Vision to Think, San Francisco. Morgan Kaufmann Publishers, CA (1999)Google Scholar
  12. 12.
    Dull, R.B., Tegarden, D.P.: A comparison of three visual representations of complex multidimensional accounting information. J. Inf. Syst. 13(2), 117 (1999)Google Scholar
  13. 13.
    Risden, K., Czerwinski, M.P.: An initial examination of ease of use for 2D and 3D information visualizations of web content. Int. J. Hum.-Comput. Stud. 53, 695–714 (2000)CrossRefGoogle Scholar
  14. 14.
    Santos, B.S.: Evaluating Visualization techniques and tools: what are the main issues? (2008). http://www.dis.uniroma1.it/beliv08/pospap/santos.pdf
  15. 15.
    Wits University: Dung beetles follow the milky way: insects found to use stars for orientation. ScienceDaily. (2013). https://www.sciencedaily.com/releases/2013/01/130124123203.htm. Accessed 20 Mar 2017
  16. 16.
    Dacke, M., Byrne, M.J., Baird, E., Scholtz, C.H., Warrant, E.J.: How dim is dim? Precision of the celestial compass in moonlight and sunlight. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 697–702 (2011)CrossRefGoogle Scholar
  17. 17.
    Kuhn, T., Woolley, O.: Modeling and Simulating Social Systems with MATLAB. Lecture 4 – Cellular Automata. ETH Zürich (2013)Google Scholar
  18. 18.
    Dell’Amore, C.: Dung beetles navigate via the milkyway, first known in animal kingdom. News Watch, National Geographic Society (2013)Google Scholar
  19. 19.
    Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus 14, 180–192 (2004)CrossRefGoogle Scholar
  20. 20.
    Etienne, A.S., Maurer, R., Saucy, F.: Limitations in the assessment of path dependent information. Behavior 106, 81–111 (1988)CrossRefGoogle Scholar
  21. 21.
    Golani, I., Benjamini, Y., Eilam, D.: Stopping behavior: constraints on exploration in rats (Rattus norvegicus). Behav. Brain Res. 53, 21–33 (1993)CrossRefGoogle Scholar
  22. 22.
    Mittelstaedt, H., Mittelstaedt, M.-L.: Homing by path integration. In: Papi, F., Wallraff, H.G. (eds.) Avian navigation, pp. 290–297. Springer, New York (1982).  https://doi.org/10.1007/978-3-642-68616-0_29CrossRefGoogle Scholar
  23. 23.
    Agbehadji, I.E., Millham, R., Fong, S.J., Yang, H.: Kestrel-based search algorithm for association rule mining of frequently changed items with numeric and time dimension (under consideration) (2018)Google Scholar
  24. 24.
    Lu, C.-T., Sripada, L.N., Shekhar, S., Liu, R.: Transportation data visualisation and mining for emergency management. Int. J. Crit. Infrastruct. 1(2/3), 170–194 (2005)CrossRefGoogle Scholar
  25. 25.
    Keim, D.A.: Visual exploration of large data sets’. Commun. ACM 44, 38–44 (2001)CrossRefGoogle Scholar
  26. 26.
    Mamduh, S.M., Kamarudin, K., Shakaff, A.Y.M., Zakaria, A., Abdullah, A.H.: Comparison of Braitenberg vehicles with bio-inspired algorithms for odor tracking in laminar flow. NSI J. Aust. J. Basic Appl. Sci. 8(4), 6–15 (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Israel Edem Agbehadji
    • 1
  • Richard Millham
    • 1
    Email author
  • Surendra Thakur
    • 1
  • Hongji Yang
    • 2
  • Hillar Addo
    • 3
  1. 1.ICT and Society Research Group, Department of Information TechnologyDurban University of TechnologyDurbanSouth Africa
  2. 2.Department of Computer ScienceUniversity of LeicesterLeicesterUK
  3. 3.School of Information Systems and Technology, Department of M.I.S.Lucas CollegeAccraGhana

Personalised recommendations