Biomarkers for the Early Detection of Cervical Cancer

  • Md Kausar Neyaz
  • Saman Ahmad


Cervical cancer is a worldwide medical problem and is the fourth most common cancer in women with a very disproportionate global distribution. Persistent infection with oncogenic human papillomavirus (HPV) is considered as the main causative agent for the development of cervical cancer. The cytological screening programs involving the Pap test significantly reduce the cervical cancer cases worldwide. Despite this evident success, screening that relies only on Pap test has several limitations. Equivocal or mildly abnormal test results require costly workup by either repeated retesting or direct colposcopy-guided biopsy, since a certain percentage of high-grade lesions that require clinical intervention hide among these unclear test results. HPV DNA testing offers improved sensitivity over cytology testing alone. The accurate genotyping of HPV infection is clinically important as oncogenic potential among the high-risk HPV genotypes varies during the pathogenesis of cervical cancer. There are various potential molecular markers of cervical cancer such as type-specific viral load, HPV DNA integration into the host genome, and methylation of tumor suppressor genes. In more than 90% of cases, HPV infections are cleared spontaneously, and less than 10% eventually progress to high-grade lesions or invasive cancer. Progression is characterized by the deregulated expression of viral oncogenes E6 and E7 in infected basal cells. Putative biomarkers allow monitoring of these essential molecular events in histological or cytological specimens. Such markers are likely to improve the early detection of cervical lesions that have a high risk of progression into invasive cancer.


Cervical cancer Human papillomavirus Genotyping Biomarkers Methylation Viral Load HPV E6/E7 mRNA p53 p16 pRb ki67 


  1. 1.
    International Agency for Research on Cancer (IARC), World Health Organization (WHO). GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012: cancer fact sheets: cervical cancer. Lyon: IARC; 2014.Google Scholar
  2. 2.
    Ferlay J, Soerjomataram I, Ervik M, Forman D, Bray F, Dixit R. GLOBOCAN 2012, cancer incidence and mortality worldwide in 2012. Lyon: International Agency for Research on Cancer; 2012.Google Scholar
  3. 3.
    Neyaz MK, Hussain S, Hassan MI, Das BC, Husain SA, Bharadwaj M. Novel missense mutation in FHIT gene: interpreting the effect in HPV-mediated cervical cancer in Indian women. Mol Cell Biochem. 2010;335:53–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    zur Hausen H. Condylomata acuminata and human genital cancer. Cancer Res. 1976;36(2 pt 2):794.PubMedPubMedCentralGoogle Scholar
  5. 5.
    zur Hausen H. Papillomavirus infections—a major cause of human cancer. Biochim Biophys Acta. 1996;1288(2):F55–78.PubMedPubMedCentralGoogle Scholar
  6. 6.
    zur Hausen H. Papillomaviruses in human cancers. Proc Assoc Am Physicians. 1999;111(6):581–7.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellasague X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348:518–27.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Durst M, Gissmann L, Ikenberg H, zurHausen H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc Natl Acad Sci U S A. 1983;80(12):3812–5.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    zur Hausen H. Papillomaviruses causing cancer: evasion from host-cell control in early events in carcinogenesis. J Natl Cancer Inst. 2000;92(9):690–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5):342–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Bosch FX, de Sanjose S. Chapter 1: human papilloma virus and cervical cancer burden and assessment of casualty. J Natl Cancer Inst Monogr. 2003;31:3–13.CrossRefGoogle Scholar
  12. 12.
    Walboomers JMM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.CrossRefGoogle Scholar
  13. 13.
    van Muyden RC, ter Harmsel BW, Smedts FM, Hermans J, Kuijpers JC, Raikhlin NT, et al. Detection and typing of human papillomavirus in cervical carcinomas in Russian women: a prognostic study. Cancer. 1999;85(9):2011–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Zielinski GD, Snijders PJ, Rozendaal L, Daalmeijer NF, Risse EK, Voorhorst FJ, et al. The presence of high-risk HPV combined with specific p53 and p16INK4a expression patterns points to high-risk HPV as the main causative agent for adenocarcinoma in situ and adenocarcinoma of the cervix. J Pathol. 2003;201(4):535–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Das BC, Sehgal A, Murthy NS, Gopalkrishna V, Sharma JK, Das DK, et al. Human papillomavirus and cervical cancer in Indian women. Lancet. 1989;2(8674):1271.PubMedCrossRefGoogle Scholar
  16. 16.
    Gravitt PE, Peyton CL, Apple RJ, Wheeler CM. Genotyping of 27 human papillomavirus types by using Li consensus PCR products by single-hybridization, reverse line blot detection method. J Clin Microbiol. 1998;36:30203027.Google Scholar
  17. 17.
    Malinowski DP. Molecular diagnostic assays for cervical neoplasia: emerging markers for the detection of high-grade cervical disease. BioTechniques. 2005;suppl:17–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Malinowski DP. Multiple biomarkers in molecular oncology. I. Molecular diagnostics applications in cervical cancer detection. Expert Rev Mol Diagn. 2007;7(2):117–31.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wentzensen N, von Knebel Doeberitz M. Biomarkers in cervical cancer screening. Dis Markers. 2007;23(4):315–30.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jordan J, Arbyn M, Martin-Hirsch P, et al. European guidelines for quality assurance in cervical cancer screening: recommendations for clinical management of abnormal cervical cytology, part 1. Cytopathology. 2008;19(6):342–54.PubMedCrossRefGoogle Scholar
  21. 21.
    Mitchell H. The price of guidelines: revising the national guidelines for managing Australian women with abnormal pap smears. Sex Health. 2006;3(1):53–5.PubMedCrossRefGoogle Scholar
  22. 22.
    Barzon L, Giorgi C, Buonaguro FM, Palu G. Guidelines of the Italian Society for Virology on HPV testing and vaccination for cervical cancer prevention. Infect Agent Cancer. 2008;3:14.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wright TC Jr, Massad LS, Dunton CJ, Spitzer M, Wilkinson EJ, Solomon D. 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am J Obstet Gynecol. 2007;197(4):346–55.PubMedCrossRefGoogle Scholar
  24. 24.
    Meijer CJ, Berkhof J, Castle PE, et al. Guidelines for human papillomavirus DNA test requirements for primary cervical cancer screening in women 30 years and older. Int J Cancer. 2009;124(3):516–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Schiffman M, Herrero R, Hildesheim A, et al. HPV DNA testing in cervical cancer screening: results from women in a high-risk province of Costa Rica. J Am Med Assoc. 2000;283:87–93.CrossRefGoogle Scholar
  26. 26.
    Wright TC Jr, Denny L, Kuhn L, et al. HPV DNA testing of self-collected vaginal samples compared with cytologic screening to detect cervical cancer. J Am Med Assoc. 2000;283(1):81–6.CrossRefGoogle Scholar
  27. 27.
    Saslow D, Solomon D, Lawson HW, Killackey M, Kulasingam SL, Cain J, et al. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. Am J Clin Pathol. 2012;137:516–42.PubMedCrossRefGoogle Scholar
  28. 28.
    Schiffman M, Solomon D. Findings to date from the ASCUS-LSIL triage study (ALTS). Arch Pathol Lab Med. 2003;127:946–9.PubMedGoogle Scholar
  29. 29.
    Paraskevaidis E, Arbyn M, Sotiriadis A, Diakomanolis E, Martin-Hirsch P, Koliopoulos G, et al. The role of HPV DNA testing in the follow-up period after treatment for CIN: a systematic review of the literature. Cancer Treat Rev. 2004;30:205–11.PubMedCrossRefGoogle Scholar
  30. 30.
    Jones J, Saleem A, Rai N, Shylasree TS, Ashman S, Gregory K, et al. Human papillomavirus genotype testing combined with cytology as a ‘test of cure’ post treatment: the importance of a persistent viral infection. J Clin Virol. 2011;52:88–92.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Heymans J, Benoy IH, Poppe W, Depuydt CE. Type-specific HPV geno-typing improves detection of recurrent high-grade cervical neoplasia after conisation. Int J Cancer. 2011;129:903–9.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Verhoef VM, Bosgraaf RP, van Kemenade FJ, Rozendaal L, Heideman DA, Hesselink AT, et al. Triage by methylation-marker testing versus cytology in women who test HPV-positive on self-collected cervicovaginal specimens (PROHTECT-3): a randomised controlled non-inferiority trial. Lancet Oncol. 2014;15:315–22.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Coquillard G, Palao B, Patterson BK. Quantification of intracellular HPV E6/E7 mRNA expression increases the specificity and positive predictive value of cervical cancer screening compared to HPV DNA. Gynecol Oncol. 2011;120(1):89–93.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Cattani P, Siddu A, D’Onghia S, et al. RNA (E6 and E7) assays versus DNA (E6 and E7) assays for risk evaluation for women infected with human papillomavirus. J Clin Microbiol. 2009;47(7):2136–41.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ratnam S, Coutlee F, Fontaine D, Bentley J, Escott N, Ghatage P, et al. Aptima HPV E6/E7 mRNA test is as sensitive as hybrid capture 2 assay but more specific at detecting cervical precancer and cancer. J Clin Microbiol. 2011;49(2):557–64.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Doorbar J. Molecular biology of human papillomavirus infection and cervical cancer. Clin Sci (Lond). 2006;110(5):525–41.CrossRefGoogle Scholar
  37. 37.
    Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res. 2002;89:213–28.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lillo FB, et al. Determination of human papillomavirus (HPV) load and type in high-grade cervical lesions surgically resected from HPV-infected women during follow-up of HPV infection. Clin Infect Dis. 2005;40:451–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415428.Google Scholar
  40. 40.
    Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, et al. Aberrant CpG island methylation has non-random and tumour-type-specific patterns. Nat Genet. 2000;24:132138.CrossRefGoogle Scholar
  41. 41.
    Esteller M, Corn PG, Baylin SB, Herman JG. A gene hypermethylation profile of human cancer. Cancer Res. 2001;6:32253229.Google Scholar
  42. 42.
    Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC. Bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood. 1993;82:18201828.Google Scholar
  43. 43.
    Esteller M, Fraga MF, Guo M, et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet. 2001;10:3001–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93(18):9821–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Eads CA1, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res. 2000;60(18):5021–6.PubMedGoogle Scholar
  46. 46.
    Lee TL, Leung WK, Chan MW, Ng EK, Tong JH, Lo KW, et al. Detection of gene promoter hypermethylation in the tumor and serum of patients with gastric carcinoma. Clin Cancer Res. 2002;8(6):1761–6.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Grady WM, Rajput A, Lutterbaugh JD, Markowitz SD. Detection of aberrantly methylated hMLH1 promoter DNA in the serum of patients with microsatellite unstable colon cancer. Cancer Res. 2001;61(3):900–2.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kalantari M, Calleja-Macias IE, Tewari D, et al. Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol. 2004;78(23):12762–72.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Turan T, Kalantari M, Calleja-Macias IE, et al. Methylation of the human papillomavirus-18 L1 gene: a biomarker of neoplastic progression? Virology. 2006;349(1):175–83.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U, et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer. 2001;92:276–84.PubMedCrossRefGoogle Scholar
  51. 51.
    Dray M, Russell P, Dalrymple C, et al. p16(INK4a) as a complementary marker of high-grade intraepithelial lesions of the uterine cervix. I: experience with squamous lesions in 189 consecutive cervical biopsies. Pathology. 2005;37(2):112–24.PubMedCrossRefGoogle Scholar
  52. 52.
    Khleif SN, DeGregori J, Yee CL, et al. Inhibition of cyclin D-CDK4/CDK6 activity is associated with an E2F-mediated induction of cyclin kinase inhibitor activity. Proc Natl Acad Sci U S A. 1996;93(9):4350–4.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Yim EK, Park JS. Biomarkers in cervical cancer. Biomark Insights. 2007;l(1):215–25.Google Scholar
  54. 54.
    Kruse AJ, Baak JPA, Janssen EA, et al. Ki67 predicts progression in early CIN: validation of a multivariate progression-risk model. Cell Oncol. 2004;26:13–20.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Pinto AP, Schlecht NF, Woo TY, et al. Biomarker (ProExTM C, p16INK4a, and MiB-1) distinction of high-grade squamous intraepithelial lesion from its mimics. Mod Pathol. 2008;21:1067–74.PubMedCrossRefGoogle Scholar
  56. 56.
    David O, Cabay RJ, Pasha S, et al. The role of deeper levels and ancillary studies (p16INK4a and ProExC) in reducing the discordance rate of Papanicolaou findings of high-grade squamous intraepithelial lesion and follow-up cervical biopsies. Cancer. 2009;117:157–66.PubMedGoogle Scholar
  57. 57.
    Shi J, Liu H, Wilkerson M, et al. Evaluation of p16INK4a, minichromosome maintenance protein 2, DNA topoisomerase IIalpha, ProEX C, and p16INK4a/ProEX C in cervical squamous intraepithelial lesions. Hum Pathol. 2007;38:1335–44.PubMedCrossRefGoogle Scholar
  58. 58.
    Kelly D, Kincaid E, Fansler Z, et al. Detection of cervical high-grade squamous intraepithelial lesions from cytologic samples using a novel immunocytochemical assay (ProEx C). Cancer. 2006;108:494–500.PubMedCrossRefGoogle Scholar
  59. 59.
    Hidalgo A, Schewe C, Petersen S, et al. Human papilloma virus status and chromosomal imbalances in primary cervical carcinomas and tumour cell lines. Eur J Cancer. 2000;36(4):542–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Yang YC, Shyong WY, Chang MS, et al. Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma. Cancer Genet Cytogenet. 2001;131(1):48–53.PubMedCrossRefGoogle Scholar
  61. 61.
    Jiang J, Wei LH, Li YL, et al. Detection of TERC amplification in cervical epithelial cells for the diagnosis of high-grade cervical lesions and invasive cancer: a multicenter study in China. J Mol Diagn. 2010;12(6):808–17.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Scheffner M, Werness BA, Huibregtse JM, Levine AJ, Howley PM. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell. 1990;63:1129–36.CrossRefGoogle Scholar
  63. 63.
    Masumoto N, Fujii T, Ishikawa M, Saito M, Iwata T, Fukuchi T, et al. P16 overexpression and human papillomavirus infection in small cell carcinoma of the uterine cervix. Hum Pathol. 2003;34:778–83.PubMedCrossRefGoogle Scholar
  64. 64.
    Kang S, Kim J, Kim HB, Shim JW, Nam E, Kim SH, et al. Methylation of p16INK4a is a non-rare event in cervical intraepithelial neoplasia. Diagn Mol Pathol. 2006;15:74–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Kalof AN, Cooper K. p16INK4a immunoexpression: surrogate marker of high-risk HPV and high-grade cervical intraepithelial neoplasia. Adv Anat Pathol. 2006;13:190–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Shaulian E, Karin M. AP-1 in cell proliferation and survival. Oncogene. 2001;20:2390–400.PubMedCrossRefGoogle Scholar
  67. 67.
    Bakin AV, Curran T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science. 1999;283:387–90.PubMedCrossRefGoogle Scholar
  68. 68.
    Hu E, Mueller E, Oliviero S, Papaioannou VE, Johnson R, Spiegelman BM. Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J. 1994;13:3094–103.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Prusty BK, Das BC. Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer. 2005;113:951–60.PubMedCrossRefGoogle Scholar
  70. 70.
    Munger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, et al. Biological activity and molecular targets of human papillomavirus E7 oncoprotein. Oncogene. 2001;20:788–7898.CrossRefGoogle Scholar
  71. 71.
    Sari Aslani F, Safaei A, Pourjabali M, et al. Evaluation of Ki67, p16 and CK17 markers in differentiating cervical intraepithelial neoplasia and benign lesions. Iran J Med Sci. 2013;38:15–21.PubMedPubMedCentralGoogle Scholar
  72. 72.
    McCluggage WG. Premalignant lesions of the lower female genital tract: cervix, vagina and vulva. Pathology. 2013;45:214–28.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kaplanis K, Kiziridou A, Liberis V, Destouni Z, Galazios G. E-cadherin expression during progression of squamous intraepithelial lesions in the uterine cervix. Eur J Gynaecol Oncol. 2005;26(6):608–10.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Yaldizl M, Hakverdi AU, Bayhan G, Akku Z. Expression of E-cadherin in squamous cell carcinomas of the cervix with correlations to clinic-pathological features. Eur J Gynaecol Oncol. 2005;26(1):95–8.PubMedPubMedCentralGoogle Scholar
  75. 75.
    De Boer CJ, Van Dorste E, Van Krieken H, Jansen-Van Rhijn CM, Warnaar SO, Fleuren JG, Litvinov SV. Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. Am J Pathol. 1999;155(2):505–15.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Birchmeier W, Behrens J. Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochim Biophys Acta. 1994;1198(1):11–26.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A. Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One. 2013;8:e67849. Scholar
  78. 78.
    Tummers B, Van Der Burg SH. High-risk human papillomavirus targets crossroads in immune signaling. Viruses. 2015;7:2485–506. Scholar
  79. 79.
    Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer. 2010;10:550–60. Scholar
  80. 80.
    Bahnassy AA, Zekri ARN, Saleh M, Lotayef M, Moneir M, Shawki O. The possible role of cell cycle regulators in multistep process of HPV-associated cervical carcinoma. BMC Clin Pathol. 2007;7:4. Scholar
  81. 81.
    Tringler B, Gup CJ, Singh M, Groshong S, Shroyer AL, Heinz DE, et al. Evaluation of p16INK4a and pRb expression in cervical squamous and glandular neoplasia. Hum Pathol. 2004;35:689–96. Scholar
  82. 82.
    Cortez MA, Ivan C, Zhou P, Wu X, Ivan M, Calin GA. microRNAs in cancer: from bench to bedside. Adv Cancer Res. 2010;108:113–57.PubMedCrossRefGoogle Scholar
  83. 83.
    Lee JW, Choi CH, Choi JJ, et al. Altered microRNA expression in cervical carcinomas. Clin Cancer Res. 2008;14(9):2535–42.CrossRefGoogle Scholar
  84. 84.
    Lui WO, Pourmand N, Patterson BK, Fire A. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res. 2007;67(13):6031–43.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene. 2008;27(18):2575–82.CrossRefGoogle Scholar
  86. 86.
    Li B, Hu Y, Ye F, Li Y, Lv W, Xie X. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer. 2010;20(4):597–604.PubMedCrossRefGoogle Scholar
  87. 87.
    Li Y, Liu J, Yuan C, Cui B, Zou X, Qiao Y. High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res. 2010;38(5):1730–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Liu C, Pan C, Shen J, Wang H, Yong L, Zhang R. Discrimination analysis of mass spectrometry proteomics for cervical cancer detection. Med Oncol. 2010;20(4):597–604.Google Scholar
  89. 89.
    Panicker G, Ye Y, Wang D, Unger ER. Characterization of the human cervical mucous proteome. Clin Proteomics. 2010;6(1–2):18–28.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Zegels G, Van Raemdonck GA, Coen EP, Tjalma WA, Van Ostade XW. Comprehensive proteomic analysis of human cervical–vaginal fluid using colposcopy samples. Proteome Sci. 2009;7:17.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Md Kausar Neyaz
    • 1
  • Saman Ahmad
    • 2
  1. 1.Department of Research and DevelopmentDSS Imagetech Pvt. Ltd.New DelhiIndia
  2. 2.Content DepartmentApplect Learning Systems Pvt. Ltd.New DelhiIndia

Personalised recommendations