Context-Sensitive Thresholding Technique Using ABC for Aerial Images

  • KirtiEmail author
  • Anshu Singla
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 898)


Image anatomization is a remarkable notch in image processing which entails the scrutinization of the number of non-overlapping and homogeneous regions that exist in the input image. Thresholding is the most popular algorithm of image segmentation. In this article, the authors have utilized energy curve to incorporate spatial contextual information to inspect the regions where most favourable threshold(s) exist. The thresholding technique automatically computes the count of objects present in input image. To determine the optimal thresholds present in the image, artificial bee colony algorithm has been deployed. The results achieved have been compared with GA-based technique to ensure the efficacy of the proposed technique.


Artificial bee colony (ABC) Image segmentation Optimization Thresholding 


  1. 1.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  2. 2.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  3. 3.
    Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Wang, L.L.: A fast multilevel thresholding method based on lowpass and highpass filter. Pattern Recognit. Lett. 1469–1478 (1997)CrossRefGoogle Scholar
  5. 5.
    Akay, B.: A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. Appl. Soft Comput. 13, 3066–3091 (2013)CrossRefGoogle Scholar
  6. 6.
    Ali, M., Ahn, C.W., Pant, M.: Multi-level image thresholding by synergetic differential evolution. Appl. Soft Comput. 17, 1–11 (2014)CrossRefGoogle Scholar
  7. 7.
    Hammouche, K., Diaf, M., Siarry, P.: A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation. Comput. Vis. Image Underst. 109(2), 163–175 (2008)CrossRefGoogle Scholar
  8. 8.
    Abutaleb, A.S.: Automatic thresholding of gray-level pictures using two-dimensional entropy, Comput. Vis. Graph. Image Process. 47(1), 22–32 (1989)CrossRefGoogle Scholar
  9. 9.
    Xiao, Y.Y., Cao, Z., Zhong, S.: New entropic thresholding approach using gray-level spatial correlation histogram. Opt. Eng. 49(12), 127007 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghamisi, P., Couceiro, M.S., Benediktsson, J.N.A., Ferreira, N.M.: An efficient method for segmentation of images based on fractional calculus and natural selection. Expert Syst. Appl. 39(16), 12407–12417 (2012)CrossRefGoogle Scholar
  11. 11.
    Bhandari, A.K., Singh, V.K., Kumar, A., Singh, G.K.: Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using kapurs entropy. Expert Syst. Appl. 41(7), 3538–3560 (2014)CrossRefGoogle Scholar
  12. 12.
    Bhandari, A.K., Kumar, A., Singh, G.K.: Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using kapurs, otsu and tsallis functions. Expert Syst. Appl. 42(3), 1573–1601 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhong, F., Li, H., Zhong, S.: A modified abc algorithm based on improved-global-best-guided approach and adaptive-limit strategy for global optimization. Appl. Soft Comput. 46, 469–486 (2016)CrossRefGoogle Scholar
  14. 14.
    Sun, H., Wang, K., Zhao, J., Yu, X.: Artificial bee colony algorithm with improved special centre. Int. J. Comput. Sci. Math. 7(6), 548–553 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Karaboga, D., Kaya, E.: An adaptive and hybrid artificial bee colony algorithm (aabc) for an s training. Appl. Soft Comput. 49, 423– 436 (2016)CrossRefGoogle Scholar
  16. 16.
    Sahoo, G., et al.: A two-step arti cial bee colony algorithm for clustering. Neural Comput. Appl. 28(3), 537–551 (2017)CrossRefGoogle Scholar
  17. 17.
    Singla, A., Patra, S.: A fast automatic optimal threshold selection technique for image segmentation. Signal Image Video Process. 11(2), 243–250 (2017)CrossRefGoogle Scholar
  18. 18.
    Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (abc) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)CrossRefGoogle Scholar
  19. 19.
    Goldberg, D., Holland, J.H.: Genetic Algorithms in Search, Optimization, and Machine Learning (1989)Google Scholar
  20. 20.
    Davis, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of CSECUIET, Chitkara UniversityChandigarhIndia

Personalised recommendations