Skip to main content

Multimodal Monitoring in the Neurocritical Care Unit

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Multimodality monitoring of cerebral physiology in neurocritical care patients includes the application of different monitoring techniques and the integration of different measured biochemical and physiologic variables into assessment of brain function. Commonly used monitoring techniques include intracranial pressure, cerebral perfusion pressure, neuroimaging, transcranial Doppler ultrasonography, cerebral oxygenation and brain tissue oxygen tension monitoring, microdialysis, and electroencephalography. The development of these techniques broadened knowledge about brain pathophysiology and cerebral hemodynamics. Moreover, integration of these information enables real-time detection of neurological injury and complications for more precise diagnosis and management of patients with brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Georgia MA, Deogaonkar A. Multimodal monitoring in the neurological intensive care unit. Neurologist. 2005;11:45–54.

    Article  Google Scholar 

  2. Majdan M, Steyerberg EW, Nieboer D, Mauritz W, Rusnak M, Lingsma HF. Glasgow coma scale motor score and pupillary reaction to predict six-month mortality in patients with traumatic brain injury: comparison of field and admission assessment. J Neurotrauma. 2015;32(2):101–8.

    Article  Google Scholar 

  3. Mokri B. The monro-kellie hypothesis: applications in CSF volume depletion. Neurology. 2001;56(12):1746–8.

    Article  CAS  Google Scholar 

  4. Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS. 2014;11:10.

    Article  Google Scholar 

  5. McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg. 1983;59:369–83.

    Article  CAS  Google Scholar 

  6. Lundberg N. Continuous recording and control of ventricular pressure in neurosurgical practice. Acta Psychiatr Scand Suppl. 1960;36:1–93.

    CAS  PubMed  Google Scholar 

  7. Hawthorne C, Piper I. Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol. 2014;5:121.

    Article  Google Scholar 

  8. Paulson OB, Strandgaard S, Edvinsson L. Cerebral autoregulation. Cerebrovasc Brain Metab Rev. 1990;2:161–92.

    CAS  PubMed  Google Scholar 

  9. Cipolla MJ. Control of cerebral blood flow. The cerebral circulation. San Rafael: Morgan and Claypool Life Sciences; 2009.

    Google Scholar 

  10. Zauner A, Muizelaar JP. Brain metabolism and cerebral blood flow. Head injury. Reilly P, Bullock R (eds.) 1997. Chapman & Hall, London.

    Google Scholar 

  11. Zauner A, Daugherty WP, Bullock MR, Warner DS. Brain oxygenation and energy metabolism. Part-I biological function and pathophysiology. Neurosurgery. 2002;51(2):289–301.

    PubMed  Google Scholar 

  12. Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    Article  Google Scholar 

  13. Chesnut RM, Temkin N, Carney N, Dikmen S, Rondina C, Videtta W, et al. A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med. 2012;367(26):2471–81.

    Article  CAS  Google Scholar 

  14. Marmarou A, Saad A, Aygok G, Rigsbee M. Contribution of raised ICP and hypotension to CPP reduction in severe brain injury: correlation to outcome. Acta Neurochir Suppl. 2005;95:277–80.

    Article  CAS  Google Scholar 

  15. Narayan RK, Kishore PR, Becker DP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.

    Article  CAS  Google Scholar 

  16. Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol. 2014;30(3):318–27.

    Article  Google Scholar 

  17. Bratton SL, Chestnut RM, Ghajar J, et al. Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma. 2007;24(Suppl 1):S55–8.

    Article  Google Scholar 

  18. Rosner MJ, Daughton S. Cerebral perfusion pressure management in head injury. J Trauma. 1990;30(8):933–40; discussion 940–1

    Article  CAS  Google Scholar 

  19. Clifton GL, Miller ER, Choi SC, Levin HS. Fluid thresholds and outcome from severe brain injury. Crit Care Med. 2002;30:739–45.

    Article  Google Scholar 

  20. Elf K, Nilsson P, Ronne-Engström E, Howells T, Enblad P. Cerebral perfusion pressure between 50 and 60 mmHg may be beneficial in head-injured patients: a computerized secondary insult monitoring study. Neurosurgery. 2005;56(5):962–71.

    PubMed  Google Scholar 

  21. Contant CF, Valadka AB, Gopinath SP, Hannay HJ, Robertson CS. Adult respiratory distress syndrome: a complication of induced hypertension after severe head injury. J Neurosurg. 2001;95:560–8.

    Article  CAS  Google Scholar 

  22. Nordstrom CH. Physiological and biochemical principles underlying volume-targeted therapy—the “Lund concept”. Neurocrit Care. 2005;2:83–95.

    Article  Google Scholar 

  23. Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E. Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg. 2012;114(2):142–8.

    Article  Google Scholar 

  24. Lassen NA, Ingvar DH. The blood flow of the cerebral cortex determined by radioactive krypton. Experientia. 1961;17:42–3.10.

    Article  CAS  Google Scholar 

  25. Williamson C, Morgan L, Klein JP. Imaging in neurocritical care practice. Semin Respir Crit Care Med. 2017;38(6):840–52.

    Article  Google Scholar 

  26. Hoeffner EG, et al. Cerebral perfusion CT: technique and clinical applications. Radiology. 2004;231(3):632–44.

    Article  Google Scholar 

  27. Vajkoczy P, Roth H, Horn P, Luecke T, Thomé C, Huebner U, et al. Continuous monitoring of regional cerebral blood flow—experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    Article  CAS  Google Scholar 

  28. Singh V, McCartnery JP, Hemphill JC. Transcranial Doppler ultrasonography in the neurologic intensive care unit. Neurol India. 2011;49(Suppl 1):S81–9.

    Google Scholar 

  29. Kalanuria A, Nyquist PA, Armonda RA, Razumovsky A. Use of Transcranial Doppler (TCD) ultrasound in the neurocritical care unit. Neurosurg Clin N Am. 2013;24(3):441–56.

    Article  Google Scholar 

  30. D’Andrea A, Conte M, Cavallaro M, Scarafile R, Riegler L, Cocchia R, et al. Transcranial Doppler ultrasonography: from methodology to major clinical applications. World J Cardiol. 2016;8(7):383–400.

    Article  Google Scholar 

  31. Olatuni RB, Ogbole GI, Atalabi OM, Adeyinka AO, Lagunju I, Oyinlade A, et al. Role of transcranial colour-coded duplex sonography in stroke management—review article. West Afr J Ultrasound. 2015;16(1):33042.

    Google Scholar 

  32. Naqvi J, Yap KH, Ahmad G, Ghosh J. Transcranial Doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med. 2013;2013:629378.

    PubMed  PubMed Central  Google Scholar 

  33. Marinoni M, Ginanneschi A, Forleo F, et al. Technical limits in transcranial Doppler recording: inadequate acoustic windows. Ultrasound Med Biol. 1997;23:1275–7.

    Article  CAS  Google Scholar 

  34. Meixensberger J, Dings J, Kuhnigk H, Roosen K. Studies of tissue PO2 in normal and pathological human brain cortex. Acta Neurochir Suppl (Wien). 1993;59:58–63.

    CAS  Google Scholar 

  35. Oddo M, Villa F, Citerio G. Brain multimodality monitoring: an update. Curr Opin Crit Care. 2012;18(2):111–8.

    Article  Google Scholar 

  36. Rosenthal G, Hemphill JC III, Sorani M, Martin C, Morabito D, Obrist WD, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.

    Article  CAS  Google Scholar 

  37. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.

    Article  Google Scholar 

  38. Maloney-Wilensky E, Gracias V, Itkin A, et al. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37:2057–63.

    Article  Google Scholar 

  39. Kiening KL, Unterberg AW, Bardt TF, Schneider GH, Lanksch WR. Monitoring cerebral oxygenation in patient with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85:751–7.

    Article  CAS  Google Scholar 

  40. Bruzzone P, Diongi R, Bellinzona G, Imberti R, Stocchetti N. Effects of cerebral perfusion pressure on brain tissue PO2 in patients with severe head injury. Acta Neurochir Suppl. 1998;71:111–3.

    CAS  PubMed  Google Scholar 

  41. Schneider GH, Sarrafzadeh A, Kiening KL, Bardt TF, Unterberg AW, Lanksch WR. Influence of hyperventilation on brain tissue-PO2, PCO2, and pH in patients with intracranial hypertension. Acta Neurochir Suppl. 1998;71:62–5.

    CAS  PubMed  Google Scholar 

  42. Gupta AK, Al-Raw PG, Hutchinson PJ, Kirkpatrick PJ. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. Br J Anaesth. 2002;88(2):188–92.

    Article  CAS  Google Scholar 

  43. Sun H, Zheng M, Wang Y, Diao Y, Zhao W, Wei Z. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment. Neuropsychiatr Dis Treat. 2016;12:2125–9.

    Article  CAS  Google Scholar 

  44. Ko S-B. Multimodality monitoring in the neurointensive care unit: a special perspective for patients with stroke. J Stroke. 2013;15(2):99–108.

    Article  Google Scholar 

  45. Dengler J, Frenzel C, Vajkoczy P, Wolf S, Horn P. Cerebral tissue oxygenation measured by two different probes: challenges and interpretation. Intensive Care Med. 2001;37(11):1809–15.

    Article  Google Scholar 

  46. Adamides AA, Cooper DJ, Rosenfeldt FL, Bailey MJ, Pratt N, Tippett N, et al. Focal cerebral oxygenation and neurological outcome with or without brain tissue oxygen-guided therapy in patients with traumatic brain injury. Acta Neurochir. 2009;151(11):1399–409.

    Article  CAS  Google Scholar 

  47. Fandino J, Stocker R, Prokop S, Imhof HG. Correlation between jugular bulb oxygen saturation and partial pressure of brain tissue oxygen during CO2 and O2 reactivity tests in severely head-injured patients. Acta Neurochir. 1999;141:825–34.

    Article  CAS  Google Scholar 

  48. Wartenberg KE, Schmidt JM, Mayer SA. Multimodality monitoring in neurocritical care. Crit Care Clin. 2007;23(3):507–38.

    Article  CAS  Google Scholar 

  49. Cruz J. On-line monitoring of global cerebral hypoxia in acute brain injury. Relationship to intracranial hypertension. J Neurosurg. 1993;79(2):228–33.

    Article  CAS  Google Scholar 

  50. Kocsis L, Herman P, Eke A. The modified Beer-Lambert law revisited. Phys Med Biol. 2006;51(5):N91–8.

    Article  CAS  Google Scholar 

  51. Springett RJ, Wylezinska M, Cady EB, Hollis V, Cope M, Delpy DT. The oxygen dependency of cerebral oxidative metabolism in the newborn piglet studied with 31P NMRS and NIRS. Adv Exp Med Biol. 2003;530:555–63.

    Article  Google Scholar 

  52. Messerer M, Daniel RT, Oddo M. Neuromonitoring after major neurosurgical procedures. Minerva Anestesiol. 2012;78:810–22.

    CAS  PubMed  Google Scholar 

  53. Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near-infrared light. Biol Psychiatry. 2002;52:679–93.

    Article  Google Scholar 

  54. Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage. 2012;63:921–35.

    Article  Google Scholar 

  55. Venclove S, Daktariunas A, Ruksenas O. Functional near-infrared spectroscopy: a continuous wave type based system for human frontal lobe studies. EXCLI J. 2015;14:1145–52.

    PubMed  PubMed Central  Google Scholar 

  56. Misra M, Stark J, Dujovny M, Widman R, Ausman JI. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20(2):137–41.

    Article  CAS  Google Scholar 

  57. Smith M, Elwell C. Near-infrared spectroscopy: shedding light on the injured brain. Anesth Analg. 2009;108:1055–7.

    Article  Google Scholar 

  58. Roh DJ, Morris NA, Claassen J. Intracranial multimodality monitoring for delayed cerebral ischemia. J Clin Neurophysiol. 2016;33(3):241–9.

    Article  Google Scholar 

  59. Hutchinson PJ, Jalloh I, Helmy A. Consensus statement from the 2014 international microdialysis forum. Intensive Care Med. 2015;41(9):1517–28.

    Article  Google Scholar 

  60. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22(1):3–41; Review.

    Article  Google Scholar 

  61. Hutchinson PJ, Jalloh I, Helmy A, Carpenter KL, Rostami E, Bellander BM, et al. Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Med. 2015;41(9):1517–28.

    Article  Google Scholar 

  62. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109(2):506–23.

    Article  Google Scholar 

  63. DeLorenzo RJ, Waterhouse EJ, Towne AR. Persistent nonconvulsive status epilepticus after the control of convulsive status epilepticus. Epilepsia. 1998;39(8):833–40.

    Article  CAS  Google Scholar 

  64. Koufen H, Dichgans J. Frequency and course of posttraumatic EEG-abnormalities and their correlations with clinical symptoms: a systematic follow up study in 344 adults. Fortschr Neurol Psychiatr Grenzgeb. 1978;46:165–77.

    CAS  PubMed  Google Scholar 

  65. Tasneem N, Samaniego EA, Pieper C, Leira EC, Adams HP, Hasan D, et al. Brain multimodality monitoring: a new tool in neurocritical care of comatose patients. Crit Care Res Prac. 2017;2017:6097265.

    Google Scholar 

  66. Stuart RM, Waziri A, Weintraub D. Intracortical EEG for the detection of vasospasm in patients with poor-grade sub- arachnoid hemorrhage. Neurocrit Care. 2010;13(3):355–8.

    Article  Google Scholar 

  67. Roh D, Park S. Brain multimodality monitoring: updated perspectives. Curr Neurol Neurosci Rep. 2016;16(6):56.

    Article  Google Scholar 

  68. Haneef Z, Levin HS, Frost JD, Mizrahi EM. Electroencephalography and quantitative electroencephalography in mild traumatic brain injury. J Neurotrauma. 2013;30(8):653–6.

    Article  Google Scholar 

  69. Ianof J, Anghinah R. Traumatic brain injury: an EEG point of view. Dement Neuropsychol. 2017;11(1):3–5.

    Article  Google Scholar 

  70. Rosenthal ES. The utility of EEG, SSEP, and other neurophysiologic tools to guide neurocritical care. Neurotherapeutics. 2012;9(1):24–36.

    Article  Google Scholar 

  71. Christophis P. The prognostic value of somatosensory evoked potentials in traumatic primary and secondary brain stem lesions. Zentralbl Neurochir. 2004;65:25–31.

    Article  CAS  Google Scholar 

  72. Moulton RJ, Shedden PM, Tucker WS, Muller PJ. Somatosensory evoked potential monitoring following severe closed head injury. Clin Invest Med. 1994;17:187–95.

    CAS  PubMed  Google Scholar 

  73. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31:960–7.

    Article  Google Scholar 

  74. Houlden D, Taylor A, Feinstein A, Midha R, Bethune A, Stewart C, Schwartz M. Early somatosensory evoked potential grades in comatose traumatic brain injury patients predict cognitive and functional outcome. Crit Care Med. 2010;38:167–74.

    Google Scholar 

  75. Taniguchi M, Nadstawek J, Pechstein U, Schramm J. Total intravenous anesthesia for improvement of intraoperative monitoring of somatosensory evoked potentials during aneurysm surgery. Neurosurgery. 1992;31(5):891–7.

    Article  CAS  Google Scholar 

  76. Cruccu G, Aminoff MJ, Curio G. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol. 2008;119:1705–19.

    Article  CAS  Google Scholar 

  77. Amantini A, Fossi S, Grippo A, et al. Continuous EEG-SSEP monitoring in severe brain injury. Clin Neurophysiol. 2009;39:85–93.

    Article  CAS  Google Scholar 

  78. Zandbergen EGJ, Hijdra A, de Haan RJ. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol. 2006;117:1529–35.

    Article  CAS  Google Scholar 

  79. Guérit JM, Amantini A, Amodio P, Andersen KV, Butler S, de Weerd A, et al. Consensus on the use of neurophysiological tests in the intensive care unit (ICU): electroencephalogram (EEG), evoked potentials (EP), and electroneuromyography (ENMG). Neurophysiol Clin. 2009;39(2):71–83.

    Article  Google Scholar 

  80. Cloostermans MC, Horn J, van Putten MJAM. The SSEP on the ICU: current applications and pitfalls. Netherlands J Crit Care. 2013;17(1):5–9.

    Google Scholar 

  81. Okonkwo DO, Shuuter LA, Moore C, Temkin NR, Puccio AM, Madden CJ, et al. Brain oxygen optimization in severe traumatic brain injury phase-II: a phase II randomized trial. Crit Care Med. 2017;45(11):1907–14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akter, F., Robba, C., Gupta, A. (2019). Multimodal Monitoring in the Neurocritical Care Unit. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics