Skip to main content

Intensive Care Management of Traumatic Spine Injury

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Acute spinal cord injury (SCI) causes neurological dysfunction and interrupts normal physiological regulatory patterns and requires anesthesia and neurocritical care management. Depending on the level of injury, airway stabilization can prove challenging, and maneuvers for laryngoscopy are more challenging prior to anesthesia induction because of restrictions related to stabilization of the cervical region from a cervical collar A preoperative evaluation of airway anatomy is crucial to determine the appropriate intubation methods. While there is no specific general anesthetic recommendation, attention should be given to maintain adequate spinal cord perfusion and prevent systemic hypotension. In addition, identifying presurgical neurologic dysfunction is important to properly assess for complications or further neuronal damage during the intraoperative period. This chapter identifies the important areas of perioperative management following acute SCI including anesthesia induction, hemodynamic challenges, fluid therapy, and postoperative pain management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz MZ, Hall RJ, Reubner B, Lilly JR, Brogen T, Toyama WM. Agenesis of the extrahepatic bile ducts: report of five cases. J Pediatr Surg. 1990;25(7):805–7.

    Article  CAS  Google Scholar 

  2. Austin N, Krishnamoorthy V, Dagal A. Airway management in cervical spine injury. Int J Crit Illn Inj Sci. 2014;4(1):50–6.

    Article  Google Scholar 

  3. Garstang SV, Miller-Smith SA. Autonomic nervous system dysfunction after spinal cord injury. Phys Med Rehabil Clin N Am. 2007;18(2):275–96.. vi–vii

    Article  Google Scholar 

  4. Krassioukov A, Claydon VE. The clinical problems in cardiovascular control following spinal cord injury: an overview. Prog Brain Res. 2006;152:223–9.

    Article  Google Scholar 

  5. Grigorean VT, Sandu AM, Popescu M, Iacobini MA, Stoian R, Neascu C, et al. Cardiac dysfunctions following spinal cord injury. J Med Life. 2009;2(2):133–45.

    PubMed  PubMed Central  Google Scholar 

  6. Phillips AA, Krassioukov AV, Ainslie PN, Warburton DE. Baroreflex function after spinal cord injury. J Neurotrauma. 2012;29(15):2431–45.

    Article  Google Scholar 

  7. Claydon VE, Steeves JD, Krassioukov A. Orthostatic hypotension following spinal cord injury: understanding clinical pathophysiology. Spinal Cord. 2006;44(6):341–51.

    Article  CAS  Google Scholar 

  8. Ogoh S, Brothers RM, Eubank WL, Raven PB. Autonomic neural control of the cerebral vasculature: acute hypotension. Stroke. 2008;39(7):1979–87.

    Article  Google Scholar 

  9. Stein DM, Menaker J, McQuillan K, Handley C, Aarabi B, Scalea TM. Risk factors for organ dysfunction and failure in patients with acute traumatic cervical spinal cord injury. Neurocrit Care. 2010;13(1):29–39.

    Article  Google Scholar 

  10. Spinal Cord Injury Thromboprophylaxis Investigators. Prevention of venous thromboembolism in the acute treatment phase after spinal cord injury: a randomized, multicenter trial comparing low-dose heparin plus intermittent pneumatic compression with enoxaparin. J Trauma. 2003;54(6):1116–24; discussion 25–6.

    Article  Google Scholar 

  11. Winemiller MH, Stolp-Smith KA, Silverstein MD, Therneau TM. Prevention of venous thromboembolism in patients with spinal cord injury: effects of sequential pneumatic compression and heparin. J Spinal Cord Med. 1999;22(3):182–91.

    Article  CAS  Google Scholar 

  12. Maung AA, Schuster KM, Kaplan LJ, Maerz LL, Davis KA. Risk of venous thromboembolism after spinal cord injury: not all levels are the same. J Trauma. 2011;71(5):1241–5.

    Article  Google Scholar 

  13. Jones T, Ugalde V, Franks P, Zhou H, White RH. Venous thromboembolism after spinal cord injury: incidence, time course, and associated risk factors in 16,240 adults and children. Arch Phys Med Rehabil. 2005;86(12):2240–7.

    Article  Google Scholar 

  14. Greenway CV, Lister GE. Capacitance effects and blood reservoir function in the splanchnic vascular bed during non-hypotensive haemorrhage and blood volume expansion in anaesthetized cats. J Physiol. 1974;237(2):279–94.

    Article  CAS  Google Scholar 

  15. Eldahan KC, Rabchevsky AG. Autonomic dysreflexia after spinal cord injury: systemic pathophysiology and methods of management. Auton Neurosci. 2018;209:59–70.

    Article  Google Scholar 

  16. Canon S, Shera A, Phan NM, Lapicz L, Scheidweiler T, Batchelor L, et al. Autonomic dysreflexia during urodynamics in children and adolescents with spinal cord injury or severe neurologic disease. J Pediatr Urol. 2015;11(1):32e1–4.

    Article  Google Scholar 

  17. Karlsson AK. Autonomic dysfunction in spinal cord injury: clinical presentation of symptoms and signs. Prog Brain Res. 2006;152:1–8.

    Article  Google Scholar 

  18. Brown R, DiMarco AF, Hoit JD, Garshick E. Respiratory dysfunction and management in spinal cord injury. Respir Care. 2006;51(8):853–68; discussion 69–70.

    PubMed  PubMed Central  Google Scholar 

  19. Yang XX, Huang ZQ, Li ZH, Ren DF, Tang JG. Risk factors and the surgery affection of respiratory complication and its mortality after acute traumatic cervical spinal cord injury. Medicine (Baltimore). 2017;96(36):e7887.

    Article  Google Scholar 

  20. Durga P, Sahu BP, Mantha S, Ramachandran G. Development and validation of predictors of respiratory insufficiency and mortality scores: simple bedside additive scores for prediction of ventilation and in-hospital mortality in acute cervical spine injury. Anesth Analg. 2010;110(1):134–40.

    Article  Google Scholar 

  21. Younan D, Lin E, Griffin R, Vanlandingham S, Waters A, Harrigan M, et al. Early trauma-induced coagulopathy is associated with increased ventilator-associated pneumonia in spinal cord injury patients. Shock. 2016;45(5):502–5.

    Article  CAS  Google Scholar 

  22. Roquilly A, Seguin P, Mimoz O, Feuillet F, Rosenczweig E, Chevalier F, et al. Risk factors for prolonged duration of mechanical ventilation in acute traumatic tetraplegic patients--a retrospective cohort study. J Crit Care. 2014;29(2):313e7–13.

    Article  Google Scholar 

  23. Buchholz AC, Pencharz PB. Energy expenditure in chronic spinal cord injury. Curr Opin Clin Nutr Metab Care. 2004;7(6):635–9.

    Article  Google Scholar 

  24. Dvorak MF, Noonan VK, Belanger L, Bruun B, Wing PC, Boyd MC, et al. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine (Phila Pa 1976). 2004;29(9):E175–80.

    Article  Google Scholar 

  25. Rodriguez DJ, Clevenger FW, Osler TM, Demarest GB, Fry DE. Obligatory negative nitrogen balance following spinal cord injury. JPEN J Parenter Enteral Nutr. 1991;15(3):319–22.

    Article  CAS  Google Scholar 

  26. Kobayakawa K, Kumamaru H, Saiwai H, Kubota K, Ohkawa Y, Kishimoto J, et al. Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Sci Transl Med. 2014;6(256):256ra137.

    Article  Google Scholar 

  27. King VR, Huang WL, Dyall SC, Curran OE, Priestley JV, Michael-Titus AT. Omega-3 fatty acids improve recovery, whereas omega-6 fatty acids worsen outcome, after spinal cord injury in the adult rat. J Neurosci. 2006;26(17):4672–80.

    Article  CAS  Google Scholar 

  28. Norouzi Javidan A, Sabour H, Latifi S, Abrishamkar M, Soltani Z, Shidfar F, et al. Does consumption of polyunsaturated fatty acids influence on neurorehabilitation in traumatic spinal cord-injured individuals? A double-blinded clinical trial. Spinal Cord. 2014;52(5):378–82.

    Article  CAS  Google Scholar 

  29. Galan-Arriero I, Serrano-Munoz D, Gomez-Soriano J, Goicoechea C, Taylor J, Velasco A, et al. The role of Omega-3 and Omega-9 fatty acids for the treatment of neuropathic pain after neurotrauma. Biochim Biophys Acta. 2017;1859(9 Pt B):1629–35.

    Article  CAS  Google Scholar 

  30. Lee HC, Cho DY, Lee WY, Chuang HC. Pitfalls in treatment of acute cervical spinal cord injury using high-dose methylprednisolone: a retrospect audit of 111 patients. Surg Neurol. 2007;68(Suppl 1):S37–41; discussion S–2.

    Article  Google Scholar 

  31. Fehlings MG, Wilson JR, Harrop JS, Kwon BK, Tetreault LA, Arnold PM, et al. Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: a systematic review. Global Spine J. 2017;7(3 Suppl):116S–37S.

    Article  Google Scholar 

  32. Qian T, Campagnolo D, Kirshblum S. High-dose methylprednisolone may do more harm for spinal cord injury. Med Hypotheses. 2000;55(5):452–3.

    Article  CAS  Google Scholar 

  33. Cheng X, Zheng Y, Bu P, Qi X, Fan C, Li F, et al. Apolipoprotein E as a novel therapeutic neuroprotection target after traumatic spinal cord injury. Exp Neurol. 2018;299(Pt A):97–108.

    Article  CAS  Google Scholar 

  34. Colon JM, Gonzalez PA, Cajigas A, Maldonado WI, Torrado AI, Santiago JM, et al. Continuous tamoxifen delivery improves locomotor recovery 6h after spinal cord injury by neuronal and glial mechanisms in male rats. Exp Neurol. 2018;299(Pt A):109–21.

    Article  CAS  Google Scholar 

Download references

Declaration of Interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Applegate II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akyol, O. et al. (2019). Intensive Care Management of Traumatic Spine Injury. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3390-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3390-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3389-7

  • Online ISBN: 978-981-13-3390-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics