Skip to main content

Robot-Assisted Neurosurgery

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Robot-assisted neurosurgery was developed to improve the effectiveness and feasibility of several procedures that require higher precision and accuracy. Apart from common neurosurgical procedures like biopsy, neuroendoscopy, and radiosurgery, various sophisticated surgeries like brain tumor removal, deep electrode placement, and surgery for intractable epilepsy have been proposed recently. The medical field is accepting robots in terms of adaptability, versatility, safety, and extensive information. The main aim is to improve the surgical skill so as to perform more precise and minimally invasive surgery which in turn will improve overall morbidity and mortality of patients. Literature is limited in providing information about anesthetic concerns in robotic surgeries. In this section we will discuss the role of robots used in different neurosurgical procedures and their anesthetic concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Estey EP. Robotic prostatectomy: the new standard of care or a marketing success? Can Urol Assoc J. 2009;3:488–90.

    Article  Google Scholar 

  2. O’Toole MD, Bouazza-Marouf K, Kerr D, et al. A methodology for design and appraisal of surgical robotic systems. Robotica. 2009;28:297–310.

    Article  Google Scholar 

  3. Ullah W, McLean A, Hunter RJ, et al. Randomized trial comparing robotic to manual ablation for atrial fibrillation. Heart Rhythm. 2014;11:1862–9.

    Article  Google Scholar 

  4. Van der Sluis PC, Ruurda JP, van der Horst S, et al. Robot-assisted minimally invasive thoraco-laparoscopic esophagectomy versus open transthoracic esophagectomy for resectable esophageal cancer, a randomized controlled trial (ROBOT trial). Trials. 2012;13:230.

    Article  Google Scholar 

  5. Corrado G, Cutillo G, Pomati G, et al. Surgical and oncological outcome of robotic surgery compared to laparoscopic and abdominal surgery in the management of endometrial cancer. Eur J Surg Oncol. 2015;41:1074–81.

    Article  CAS  Google Scholar 

  6. Liu H, Lawrie TA, Lu D, et al. Robot-assisted surgery in gynaecology. Cochrane Database Syst Rev. 2014;12:CD011422. https://doi.org/10.1002/14651858.CD011422.

    Article  Google Scholar 

  7. Gurusamy KS, Samraj K, Fusai G, et al. Robot assistant versus human or another robot assistant in patients undergoing laparoscopic cholecystectomy. Cochrane Database Syst Rev. 2012;9:CD006578. https://doi.org/10.1002/14651858.CD006578.

    Article  PubMed Central  Google Scholar 

  8. Gui H, Zhang S, Luan N, et al. Novel system for navigation-and robot-assisted craniofacial surgery: establishment of the principle prototype. J Craniofac Surg. 2015;26:746–9.

    Article  Google Scholar 

  9. Roser F, Tatagiba M, Maier G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72:12–8.

    Article  Google Scholar 

  10. Haegelen C, Touzet G, Reyns N, et al. Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56:363–7.

    Article  CAS  Google Scholar 

  11. Kulkarni AV, RivaCambrin J, Holubkov R, et al. Endoscopic third ventriculostomy in children: prospective, multicenter results from the Hydrocephalus Clinical Research Network. J Neurosurg Pediatr. 2016;18:423–9.

    Article  Google Scholar 

  12. Hoshide R, Calayag M, Meltzer H, et al. Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients. J NeurosurgPediatr. 2017;20:125–33.

    Google Scholar 

  13. Fiani B, Quadri SA, Ramakrishnan V, et al. Retrospective review on accuracy: a pilot study of robotically guided thoracolumbar/sacral pedicle screws versus fluoroscopy-guided and computerized tomography stealth-guided screws. Cureus. 2017;9:e1437.

    PubMed  PubMed Central  Google Scholar 

  14. Eddib A, Hughes S, Aalt M, et al. Impact of age on surgical outcomes after robot assisted laparoscopic hysterectomies. Surg Sci. 2014;5:90–6.

    Article  Google Scholar 

  15. Ettore É, Wyckaert E, David R, et al. Robotics and improvement of the quality of geriatric care. Soins Gerontol. 2016;21:15–7.

    Article  Google Scholar 

  16. Miller BA, Salehi A, Limbrick DD, et al. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. J Neurosurg Pediatr. 2017;20:364–70.

    Article  Google Scholar 

  17. Carai A, Mastronuzzi A, De Benedictis A, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584–8.

    Article  Google Scholar 

  18. Hoshide R, Calayag M, Meltzer H, et al. Robot-assisted endoscopic third ventriculostomy: institutional experience in 9 patients. J Neurosurg Pediatr. 2017;20:125–33.

    Article  Google Scholar 

  19. Macke JJ, Woo R, Varich L. Accuracy of robot-assisted pedicle screw placement for adolescent idiopathic scoliosis in the pediatric population. J Robot Surg. 2016;10:145–50.

    Article  Google Scholar 

  20. Chauvet D, Hans S, Missistrano A, et al. Transoral robotic surgery for sellar tumors: first clinical study. J Neurosurg. 2017;127:941–8.

    Article  Google Scholar 

  21. Tsai EC, Santoreneos S, Rutka JT. Tumors of the skull base in children: review of tumor types and management strategies. Neurosurg Focus. 2002;12:e1.

    Article  Google Scholar 

  22. Vougioukas VI, Hubbe U, Hochmuth A, et al. Perspectives and limitations of image-guided neurosurgery in pediatric patients. Childs Nerv Syst. 2003;19:783–91.

    Article  Google Scholar 

  23. De Benedictis A, Trezza A, Carai A, et al. Robot-assisted procedures in pediatric neurosurgery. Neurosurg Focus. 2017;42:E7.

    Article  Google Scholar 

  24. Marcus HJ, Hughes-Hallett A, Cundy TP, et al. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev. 2015;38:367–71.

    Article  Google Scholar 

  25. Hong WC, Tsai JC, Chang SD, et al. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study. Neurosurgery. 2013;72:33–8.

    Article  Google Scholar 

  26. Fomekong E, Safi SE, Raftopoulos C. Spine navigation based on 3-dimensional robotic fluoroscopy for accurate percutaneous pedicle screw placement: a prospective study of 66 consecutive cases. World Neurosurg. 2017;108:76–83.

    Article  Google Scholar 

  27. Pak N, Siegle JH, Kinney JP, et al. Closed-loop, ultraprecise, automated craniotomies. J Neurophysiol. 2015;113:3943–53.

    Article  Google Scholar 

  28. Ishikawa N, Watanabe G. Robot-assisted cardiac surgery. Ann Thorac Cardiovasc Surg. 2015;21:322–8.

    Article  Google Scholar 

  29. Sert MB, Eraker R. Robot-assisted laparoscopic surgery in gynaecological oncology; initial experience at Oslo Radium Hospital and 16 months follow-up. Int J Med Robot. 2009;5:410–4.

    Article  Google Scholar 

  30. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.

    Article  Google Scholar 

  31. Chen B, Finnerty BM, Schamberg NJ, et al. Transabdominal robotic repair of a congenital right diaphragmatic hernia containing an intrathoracic kidney: a case report. J Robot Surg. 2015;9:357–60.

    Article  Google Scholar 

  32. Michiels C, Rouffilange J, Comat V, et al. Total preperitoneal robot-assisted kidney transplantation. J Endourol Case Rep. 2017;3:169–72.

    Article  Google Scholar 

  33. Dobbs TD, Cundy O, Samarendra H, et al. A systematic review of the role of robotics in plastic and reconstructive surgery-from inception to the future. Front Surg. 2017;4:66.

    Article  Google Scholar 

  34. Herling SF, Dreijer B, Wrist Lam G, et al. Total intravenous anaesthesia versus inhalational anaesthesia for adults undergoing transabdominal robotic assisted laparoscopic surgery. Cochrane Database Syst Rev. 2017;4:CD011387. https://doi.org/10.1002/14651858.CD011387.

    Article  PubMed  Google Scholar 

  35. Kapoor I, Rath GP. Robotized surgical assistant in neurosurgery. Anaesthetic implication! J Neuroanaesthesiol Crit Care. 2016;3:151–2.

    Article  Google Scholar 

  36. Hodge B, Thompson JF. Noise pollution in the operating theatre. Lancet. 1990;335:891–4.

    Article  CAS  Google Scholar 

  37. Shapiro RA, Berland T. Noise in the operating room. N Engl J Med. 1972:1236–8.

    Article  CAS  Google Scholar 

  38. Cabrera IN, Lee MH. Reducing noise pollution in the hospital setting by establishing a department of sound: a survey of recent research on the effects of noise and music in health care. Prev Med. 2000;30:339–45.

    Article  CAS  Google Scholar 

  39. West J, Vishniac IB, King J, et al. Noise reduction in an operating room: a case study. J Acoust Soc Am. 2008;123:3677.

    Article  Google Scholar 

  40. Siu KC, Suh IH, Mukherjee M, et al. The impact of environmental noise on robot-assisted laparoscopic surgical performance. Surgery. 2010;147:107–13.

    Article  Google Scholar 

  41. Kitahara H, Patel B, McCrorey M, et al. Morbid obesity does not increase morbidity or mortality in robotic cardiac surgery. Innovations. 2017;12:434–9.

    Article  Google Scholar 

  42. Wetzel CM, Kneebone RL, Woloshynowych M, et al. The effects of stress on surgical performance. Am J Surg. 2006;191(1):5–10.

    Article  Google Scholar 

  43. Hurley AM, Kennedy PJ, O’Connor L, et al. SOS save our surgeons: stress levels reduced by robotic surgery. Gynecol Surg. 2015;12:197–206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, I., Mahajan, C., Prabhakar, H. (2019). Robot-Assisted Neurosurgery. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics