Skip to main content

Physiology for Neuroanesthesia

  • Chapter
  • First Online:
  • 1260 Accesses

Abstract

A sound understanding of cerebral and spinal cord physiology is vital for the delivery of safe perioperative care of patients undergoing anesthesia for neurosurgical procedures. This chapter covers key concepts in cerebral and spinal cord physiology, with particular attention to clinical relevance for the neuroanesthetist. Cerebral metabolism, cerebral blood flow and autoregulation, intracranial pressure, and cerebrospinal fluid physiology are reviewed. In addition, relevant pituitary and spinal cord physiology is also discussed. The chapter is intended to provide those involved in the care of neurosurgical patients with updated concepts in core physiological principles that underpin the practice of neuroanesthesia and neurocritical care.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cravan C, Reddy U. Applied cerebral physiology. Anaesth Intensive Care Med. 2016;17(12):630–4.

    Article  Google Scholar 

  2. Taylor C, Hirsch N. Applied cerebral physiology. Anaesth Intensive Care Med. 2010;11(9):343–8.

    Article  Google Scholar 

  3. Brooks G. Lactate: glycolytic end product and oxidative substrate during sustained exercise in mammals – the ‘lactate shuttle’. In: Gilles R, editor. Circulation, respiration, and metabolism: current comparative approaches. Berlin: Springer; 1985. p. 208–18.

    Chapter  Google Scholar 

  4. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence supporting the existence of an activity-dependent astrocyte–neuron lactate shuttle. Dev Neurosci. 1998;20(4–5):291–9.

    Article  CAS  PubMed  Google Scholar 

  5. Coles JP. Cerebral Metabolism. In: Gupta AK, Gelb AW, editors. Essentials of Neuroanesthesia and Neurocritical care. Philadelphia: Saunders; 2008. p. 32–5.

    Chapter  Google Scholar 

  6. Kass IS, Cottrell JE, Abramowicz AE, Hou JY, Lei B. Brain metabolism, the pathophysiology of brain injury, the potential beneficial agents and techniques. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2017. p. 1–18.

    Google Scholar 

  7. Tameem A, Krovvidi H. Cerebral physiology. Contin Educ Anaesth Crit Care Pain. 2012;13(4):113–8.

    Article  Google Scholar 

  8. Venkat P, Chopp M, Chen J. New insights into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med J. 2016;57:223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  10. Jessen NA, Munk ASF, Lundgaard I, Nedergaard M. The glymphatic system – a beginner’s guide. Neurochem Res. 2015;40(12):2583–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.

    PubMed  Google Scholar 

  12. Armstead W. Cerebral blood flow autoregulation and dysautoregulation. Anesthesiol Clin. 2016;34(3):465–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lassen LA. Cerebral blood flow and oxygen consumption in man. Physiol Rev. 1959;39:183–238.

    Article  CAS  PubMed  Google Scholar 

  14. Payne S. Cerebral autoregulation: control of blood flow in the brain. Berlin: Springer; 2016.

    Book  Google Scholar 

  15. Ainslie PN, Duffin J. Integration of cerebrovascular CO2 reactivity and chem-reflex control breathing: mechanisms of regulation, measurement and interpretation. Am J Physiol Regul Integr Comp Physiol. 2009;296(5):1473–95.

    Article  Google Scholar 

  16. Hou YJ. Physiology and metabolism of the brain and spinal cord. In: Newfield P, Cottrell JE, editors. Handbook of Neuroanesthesia. 5th ed. Baltimore: Lippincott Williams and Wilkins; 2012. p. 1–9.

    Google Scholar 

  17. Zacharia B, Sander Connolly E Jr. Principles of cerebral metabolism and blood flow. In: Le Roux P, Levine J, Kofke W, editors. Monitoring in neurocritical care. 1st ed. Philadelphia: Saunders; 2013.

    Google Scholar 

  18. Meng L, Gelb A. Regulation of cerebral autoregulation by carbon dioxide. Anesthesiology. 2015;122:196–205.

    Article  PubMed  Google Scholar 

  19. Shardlow E, Jackson A. Cerebral blood flow and intracranial pressure. Anaesth Intensive Care Med. 2011;12(5):220–3.

    Article  Google Scholar 

  20. Artu AA. Cerebrospinal fluid. In: Cottrell JE, Patel P, editors. Cottrell and Patel’s neuroanesthesia. 6th ed. Amsterdam: Elsevier; 2017. p. 59–73.

    Google Scholar 

  21. Hill L, Gwinnutt C. Cerebral physiology part 2 - intracranial pressure. ATOTW. 2007;71:1–9.

    Google Scholar 

  22. Sorrentino E, Diedler J, Kasprowicz M, et al. Neurocrit Care. 2012;16(2):258–66.

    Article  CAS  PubMed  Google Scholar 

  23. Timofeev I. The intracranial compartment and intracranial pressure. In: Gupta AK, Gelb AW, editors. Essentials of neuroanesthesia and neurocritical care. Philadelphia: Saunders; 2008. p. 26–41.

    Chapter  Google Scholar 

  24. Abbott AH, Netherway DJ, Niemann DB, et al. CT determined intracranial volume for a normal population. J Craniofac Surg. 2000;11:211–23.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson MH. Monro-Kellie 2.0: the dynamic vascular and venous pathophysiological components of intracranial pressure. J Cereb Blood Flow Metab. 2016;36(8):1338–50.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Monro A. Observations on the structure and function of the nervous system. Edinburgh: Creech and Johnson; 1783.

    Google Scholar 

  27. Kellie G. An account of the appearances observed in the dissection of two of the three individuals presumed to have perished in the storm of the 3rd, and whose bodies were discovered in the vicinity of Leith on the morning of the 4th November 1821 with some reflections on the pathology of the brain. Trans Medico Chirurg Soc Edinburgh. 1824;1:84–169.

    Google Scholar 

  28. Cushing H. The third circulation in studies in intracranial physiology and surgery. London: Oxford University Press; 1926.

    Google Scholar 

  29. Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12:10–4.

    Article  CAS  PubMed  Google Scholar 

  30. Cushing H. The blood pressure reaction of acute cerebral compression, illustrated by cases of intracranial hemorrhage. Am J Sci. 1903;13:1017–44.

    Google Scholar 

  31. Nimmo G, Howie A, Grant I. Effects of mechanical ventilation on Cushing’s triad. Crit Care. 2009;13(Suppl 1):77.

    Article  Google Scholar 

  32. Nussey SS, Whitehead SA. The pituitary gland. In: Nussey SS, Whitehead SA, editors. Endocrinology: an integrated approach. London: Bios Scientific Publishers Ltd; 2001. p. 283–331.

    Chapter  Google Scholar 

  33. Bonner S, Smith C. Initial management of acute spinal cord injury. Contin Educ Anaesth Crit Care Pain. 2013;13(6):224–31.

    Article  Google Scholar 

  34. Ranalli LJ, Taylor GA. Neuroanatomy, neurophysiology, and neuroanesthesia. 2016. https://aneskey.com/neuroanatomy-neurophysiology-and-neuroanesthesia/. Accessed 1 Feb 2018.

  35. Stecker MM. A review of intraoperative monitoring for spinal surgery. Surg Neurol Int. 2012;3(Suppl 3):174–87.

    Article  Google Scholar 

  36. Hacking C, Knipe H. Spinal Cord Blood Supply. 2017. https://radiopaedia.org/articles/spinal-cord-blood-supply/revisions. Accessed 1 Feb 2018.

  37. Ploumis A, Yadlapalli N, Fehlings MG, Kwon BK, Vaccaro AR. A systematic review of the evidence supporting a role for vasopressor support in acute SCI. Spinal Cord. 2010;48(5):356–62.

    Article  CAS  PubMed  Google Scholar 

  38. Ryken TC, Hurlbert RJ, Hadley MN, Aarabi B, Dhall SS, Gelb DE, et al. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013;72(Suppl 2):84–92.

    Article  PubMed  Google Scholar 

  39. Werndle MC, Saadoun S, Phang I, Czosnyka M, Varsos GV, Czosnyka ZH, et al. Monitoring of spinal cord perfusion pressure in acute spinal cord injury: initial findings of the injured spinal cord pressure evaluation study. Crit Care Med. 2014;42(3):646–55.

    Article  PubMed  Google Scholar 

  40. Squair JW, Belanger LM, Tsang A, Ritchie L, Mac-Thiong JM, Parent S, et al. Spinal cord perfusion pressure predicts neurologic recovery in acute spinal cord injury. Neurology. 2017;89(16):1660–7.

    Article  PubMed  Google Scholar 

  41. Bankenahally R, Krovvidi H. Autonomic nervous system: anatomy, physiology, and relevance in anaesthesia and critical care medicine. BJA Educ. 2016;16(11):381–7.

    Article  Google Scholar 

  42. Singhal V, Aggarwal R. Spinal shock. In: Prabhakar H, editor. Complications in neuroanesthesia. San Diego: Academic; 2016. p. 89–94.

    Chapter  Google Scholar 

  43. Shergill IS, Arya M, Hamid R, et al. The importance of autonomic dysreflexia to the urologist. BJU Int. 2004;93:923–6.

    Article  CAS  PubMed  Google Scholar 

  44. Petsas A, Drake J. Perioperative management for patients with a chronic spinal cord injury. BJA Educ. 2015;15(3):123–30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Price .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Price, T.M., Kelly, C.J., Megaw, K.E.S. (2019). Physiology for Neuroanesthesia. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics