Abstract
Spine surgery is a common procedure performed in both elective and emergency scenarios. Over the last two decades, there have been a multitude of advances in surgical and anesthetic techniques that have improved patient safety and postoperative outcomes. The recent focus of anesthetic management for patients undergoing spine surgery is not only limited to successful perioperative assessment or intraoperative stability but also to rapid recovery and prevention of postoperative complications. In recent years, enhanced recovery after surgery (ERAS) programs have emerged within the specialty of spine surgery. These programs include a multidisciplinary, patient-focused approach along with multimodal analgesic strategies aimed at decreasing complications, relieving postoperative pain, and consequently hastening recovery and reducing length of stay. Although general anesthesia for spine surgery has been widely accepted, a new era of regional anesthesia brings growing evidence to supporting its use in lumbar spine surgery. Regional techniques have been associated with reduction in intraoperative blood loss, length of hospital stay, and incidence of postoperative nausea and vomiting. This recent evidence has provoked further discussion of this topic, and, to date, there is still no definite answer regarding optimal anesthesia for spine surgery. This chapter serves to summarize the available evidence on management of anesthesia for patients undergoing spine surgery.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Raw D, Beattie J, Hunter J. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91(6):886–904.
Wainwright TW, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best Pract Res Clin Anaesthesiol. 2016;30(1):91–102.
Wang MY, Chang PY, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine. 2017;26(4):411–8.
Wainwright TW, Wang MY, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS)—concepts, components, and application to spine surgery. Semin Spine Surg. 2018;30(2):104–10.
Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform. 2016;4:288–95.
Papanastassiou I, Anderson R, Barber N, Conover C, Castellvi AE. Effects of preoperative education on spinal surgery patients. SAS J. 2011;5(4):120–4.
Zheng K, Angst M. Guidelines for the intraoperative management of patients undergoing spine surgery. Ether: Resour Anesth Res Edu Stanford Med. http://ether.stanford.edu/policies/spine_surgery.html. Accessed 4 Jan 2018
Yoshida G, Hasegawa T, Yamato Y, Kobayashi S, Oe S, Banno T, et al. Predicting perioperative complications in adult spinal deformity surgery using a simple sliding scale. Spine. 2018;43(8):562–70.
Furunes H, Hellum C, Brox JI, Rossvoll I, Espeland A, Berg L, et al. Lumbar total disc replacement: predictors for long-term outcome. European Spine J. 2017;27(3):709–18. https://doi.org/10.1007/s00586-017-5375-1.
Madsbu MA, Salvesen O, Werner DAT, Franssen E, Weber C, Nygaard OP, et al. Surgery for herniated lumbar disc in daily tobacco smokers: a multicenter observational study. World Neurosurg. 2018;109:e581–7.
Dessy AM, Yuk FJ, Maniya AY, Connolly JG, Nathanson JT, Rasouli JJ, Choudhri TF. Reduced surgical site infection rates following spine surgery using an enhanced prophylaxis protocol. Cureus. 2017;9(4):e1139.
Robba C, Qeva E, Borsellino B, Aloisio S, Tosti G, Bilotta F. Effects of propofol or sevoflurane anesthesia induction on hemodynamics in patients undergoing fiberoptic intubation for cervical spine surgery: a randomized, controlled. J Anaesthesiol Clin Pharmacol. 2017;33(2):215–20.
John DA, Tobey RE, Homer LD, Rice CL. Onset of succinylcholine-induced hyperkalemia following denervation. Anesthesiology. 1976;45(3):294–9.
Hambly PR, Martin B. Anaesthesia for chronic spinal cord lesions. Anaesthesia. 1998;53(3):273–89.
Calder I. Anaesthesia for spinal surgery. Best Pract Res Clin Anaesthesiol. 1999;13(4):629–42.
Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, Beach ML. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.
Mitra R, Prabhakar H, Rath GP, Bithal PK, Khandelwal A. A comparative study between intraoperative low-dose ketamine and dexmedetomidine, as an anaesthetic adjuvant in lumbar spine instrumentation surgery for the post-operative analgesic requirement. J Neuroanaesthesiol Crit Care. 2017;4(2):91.
Zorrilla-Vaca A, Healy RJ, Mirski MA. A comparison of regional versus general anesthesia for lumbar spine surgery: a meta-analysis of randomized studies. J Neurosurg Anesthesiol. 2017;29(4):415–25.
Sharrock NE. Lumbar spine fusion performed with hypotensive thoracic epidural anesthesia. Tech Reg Anesth Pain Manag. 1999;3(4):233–5.
Gessler F, Mutlak H, Tizi K, Senft C, Setzer M, Seifert V, Weise L. Postoperative patient-controlled epidural analgesia in patients with spondylodiscitis and posterior spinal fusion surgery. J Neurosurg Spine. 2016;24(6):965–70.
Wenk M, Liljenqvist U, Kaulingfrecks T, Gurlit S, Ermert T, Popping DM, Mollmann M. Intra- versus postoperative initiation of pain control via a thoracic epidural catheter for lumbar spinal fusion surgery: a randomised trial. Minerva Anestesiol. 2017;84(7):796–802. https://doi.org/10.23736/s0375-9393.17.12136-x.
Tian P, Fu X, Li ZJ, Ma XL. Comparison of patient-controlled epidural analgesia and patient-controlled intravenous analgesia after spinal fusion surgery: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2015;16:388.
Wang H, Ma L, Yang D, Wang T, Wang Q, Zhang L, Ding W. Cervical plexus anesthesia versus general anesthesia for anterior cervical discectomy and fusion surgery: a randomized clinical trial. Medicine. 2017;96(7):e6119.
Mariappan R, Mehta J, Massicotte E, Nagappa M, Manninen P, Venkatraghavan L. Effect of superficial cervical plexus block on postoperative quality of recovery after anterior cervical discectomy and fusion: a randomized controlled trial. Can J Anesth. 2015;62(8):883.
He-Jiang Z, Tian-de Y, Jing H. Clinical study of cervical plexus block in combination with general anesthesia in patients undergoing anterior cervical spine surgery. Chongqing Med. 2010;19:025.
Liu D-H, Cai P, Liang J-Q, Feng Z-H, Lu X-Q, Zhang K-J. The efficacy of combination of general anesthesia and unilateral cervical plexus nerve block for anterior cervical spine surgery. Guide Chin Med. 2009;13:026.
Yuan QM, Zhao ZH, Xu BS. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J. 2017;26(1):131–9.
Li G, Sun TW, Luo G, Zhang C. Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J. 2017;26(1):140–54.
Yang B, Li H, Wang D, He X, Zhang C, Yang P. Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS One. 2013;8(2):e55436.
Phan K, Dunn AE, Kim JS, Capua JD, Somani S, Kothari P, et al. Impact of preoperative anemia on outcomes in adults undergoing elective posterior cervical fusion. Global Spine J. 2017;7(8):787–93.
Qureshi R, Puvanesarajah V, Jain A, Hassanzadeh H. Perioperative management of blood loss in spine surgery. Clin Spine Surg. 2017;30(9):383–8.
Epstein NE. Bloodless spinal surgery: a review of the normovolemic hemodilution technique. Surg Neurol. 2008;70(6):614–8.
American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Anesthesiology. 2012;116(2):274–85.
Manrique Espinel AM, Feldman JM, Nelson S, Smaliak T, Flynn JM, Nicolson SC. Anaphylaxis to surgiflo during posterior spinal fusion in an adolescent status post truncus arteriosus repair: a case report. A A Case Rep. 2017;10(6):129–32. https://doi.org/10.1213/xaa.0000000000000646.
Ullrich PF Jr, Keene JS, Hogan KJ, Roecker EB. Results of hypotensive anesthesia in operative treatment of thoracolumbar fractures. J Spinal Disord. 1990;3(4):329–33.
Dutton RP. Controlled hypotension for spinal surgery. Eur Spine J. 2004;13(Suppl 1):S66–71.
Tobias JD. Fenoldopam for controlled hypotension during spinal fusion in children and adolescents. Paediatr Anaesth. 2000;10(3):261–6.
Nahtomi-Shick O, Kostuik JP, Winters BD, Breder CD, Sieber AN, Sieber FE. Does intraoperative fluid management in spine surgery predict intensive care unit length of stay? J Clin Anesth. 2001;13(3):208–12.
Nicklas JY, Saugel B. Non-invasive hemodynamic monitoring for hemodynamic management in perioperative medicine. Front Med. 2017;4:209.
Bacchin MR, Ceria CM, Giannone S, Ghisi D, Stagni G, Greggi T, Bonarelli S. Goal-directed fluid therapy based on stroke volume variation in patients undergoing major spine surgery in the prone position: a cohort study. Spine. 2016;41(18):E1131–7.
Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson JL, Payen JF. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35(4):255–60.
Park J-H, Hyun S-J. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3(9):765–73.
Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.
Trafidlo T, Gaszynski T, Gaszynski W, Nowakowska-Domagala K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study. Int J Surg. 2015;16(Pt A):23–30.
Zorrilla-Vaca A, Healy RJ, Grant M, Joshi B, Rivera-Lara L, Brown CH, Mirski MA. Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anesth. 2018;65(5):529–42.
Deiner S, Chu I, Mahanian M, Lin HM, Hecht AC, Silverstein JH. Prone position is associated with mild cerebral oxygen desaturation in elderly surgical patients. PLoS One. 2014;9(9):e106387.
Nazemi AK, Gowd AK, Carmouche JJ, Kates SL, Albert TJ, Behrend CJ. Prevention and management of postoperative delirium in elderly patients following elective spinal surgery. Clin Spine Surg. 2017;30(3):112–9.
Li YN, Zhang Q, Yin CP, Guo YY, Huo SP, Wang L, Wang QJ. Effects of nimodipine on postoperative delirium in elderly under general anesthesia: a prospective, randomized, controlled clinical trial. Medicine. 2017;96(19):e6849.
Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, Domino KB. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9.
Warner MA. Postoperative visual loss: experts, data, and practice. Anesthesiology. 2006;105(4):641–2.
Larson CP Jr. Excessive crystalloid infusion may contribute to ischemic optic neuropathy. Anesthesiology. 2007;106(6):1249.. author reply 1251–2.
Kurd MF, Kreitz T, Schroeder G, Vaccaro AR. The role of multimodal analgesia in spine surgery. J Am Acad Orthop Surg. 2017;25(4):260–8.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Zorrilla-Vaca, A., Grant, M.C., Mirski, M.A. (2019). Anesthesia for Spine Surgery. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_14
Download citation
DOI: https://doi.org/10.1007/978-981-13-3387-3_14
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-3386-6
Online ISBN: 978-981-13-3387-3
eBook Packages: MedicineMedicine (R0)