Skip to main content

Anesthesia for Spine Surgery

  • Chapter
  • First Online:
Textbook of Neuroanesthesia and Neurocritical Care

Abstract

Spine surgery is a common procedure performed in both elective and emergency scenarios. Over the last two decades, there have been a multitude of advances in surgical and anesthetic techniques that have improved patient safety and postoperative outcomes. The recent focus of anesthetic management for patients undergoing spine surgery is not only limited to successful perioperative assessment or intraoperative stability but also to rapid recovery and prevention of postoperative complications. In recent years, enhanced recovery after surgery (ERAS) programs have emerged within the specialty of spine surgery. These programs include a multidisciplinary, patient-focused approach along with multimodal analgesic strategies aimed at decreasing complications, relieving postoperative pain, and consequently hastening recovery and reducing length of stay. Although general anesthesia for spine surgery has been widely accepted, a new era of regional anesthesia brings growing evidence to supporting its use in lumbar spine surgery. Regional techniques have been associated with reduction in intraoperative blood loss, length of hospital stay, and incidence of postoperative nausea and vomiting. This recent evidence has provoked further discussion of this topic, and, to date, there is still no definite answer regarding optimal anesthesia for spine surgery. This chapter serves to summarize the available evidence on management of anesthesia for patients undergoing spine surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Raw D, Beattie J, Hunter J. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91(6):886–904.

    Article  CAS  Google Scholar 

  2. Wainwright TW, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS) and its applicability for major spine surgery. Best Pract Res Clin Anaesthesiol. 2016;30(1):91–102.

    Article  Google Scholar 

  3. Wang MY, Chang PY, Grossman J. Development of an Enhanced Recovery After Surgery (ERAS) approach for lumbar spinal fusion. J Neurosurg Spine. 2017;26(4):411–8.

    Article  Google Scholar 

  4. Wainwright TW, Wang MY, Immins T, Middleton RG. Enhanced recovery after surgery (ERAS)—concepts, components, and application to spine surgery. Semin Spine Surg. 2018;30(2):104–10.

    Article  Google Scholar 

  5. Gornitzky AL, Flynn JM, Muhly WT, Sankar WN. A rapid recovery pathway for adolescent idiopathic scoliosis that improves pain control and reduces time to inpatient recovery after posterior spinal fusion. Spine Deform. 2016;4:288–95.

    Article  Google Scholar 

  6. Papanastassiou I, Anderson R, Barber N, Conover C, Castellvi AE. Effects of preoperative education on spinal surgery patients. SAS J. 2011;5(4):120–4.

    Article  Google Scholar 

  7. Zheng K, Angst M. Guidelines for the intraoperative management of patients undergoing spine surgery. Ether: Resour Anesth Res Edu Stanford Med. http://ether.stanford.edu/policies/spine_surgery.html. Accessed 4 Jan 2018

  8. Yoshida G, Hasegawa T, Yamato Y, Kobayashi S, Oe S, Banno T, et al. Predicting perioperative complications in adult spinal deformity surgery using a simple sliding scale. Spine. 2018;43(8):562–70.

    Article  Google Scholar 

  9. Furunes H, Hellum C, Brox JI, Rossvoll I, Espeland A, Berg L, et al. Lumbar total disc replacement: predictors for long-term outcome. European Spine J. 2017;27(3):709–18. https://doi.org/10.1007/s00586-017-5375-1.

    Article  Google Scholar 

  10. Madsbu MA, Salvesen O, Werner DAT, Franssen E, Weber C, Nygaard OP, et al. Surgery for herniated lumbar disc in daily tobacco smokers: a multicenter observational study. World Neurosurg. 2018;109:e581–7.

    Article  Google Scholar 

  11. Dessy AM, Yuk FJ, Maniya AY, Connolly JG, Nathanson JT, Rasouli JJ, Choudhri TF. Reduced surgical site infection rates following spine surgery using an enhanced prophylaxis protocol. Cureus. 2017;9(4):e1139.

    PubMed  PubMed Central  Google Scholar 

  12. Robba C, Qeva E, Borsellino B, Aloisio S, Tosti G, Bilotta F. Effects of propofol or sevoflurane anesthesia induction on hemodynamics in patients undergoing fiberoptic intubation for cervical spine surgery: a randomized, controlled. J Anaesthesiol Clin Pharmacol. 2017;33(2):215–20.

    PubMed  PubMed Central  Google Scholar 

  13. John DA, Tobey RE, Homer LD, Rice CL. Onset of succinylcholine-induced hyperkalemia following denervation. Anesthesiology. 1976;45(3):294–9.

    Article  CAS  Google Scholar 

  14. Hambly PR, Martin B. Anaesthesia for chronic spinal cord lesions. Anaesthesia. 1998;53(3):273–89.

    Article  CAS  Google Scholar 

  15. Calder I. Anaesthesia for spinal surgery. Best Pract Res Clin Anaesthesiol. 1999;13(4):629–42.

    Article  Google Scholar 

  16. Loftus RW, Yeager MP, Clark JA, Brown JR, Abdu WA, Sengupta DK, Beach ML. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology. 2010;113(3):639–46.

    CAS  PubMed  Google Scholar 

  17. Mitra R, Prabhakar H, Rath GP, Bithal PK, Khandelwal A. A comparative study between intraoperative low-dose ketamine and dexmedetomidine, as an anaesthetic adjuvant in lumbar spine instrumentation surgery for the post-operative analgesic requirement. J Neuroanaesthesiol Crit Care. 2017;4(2):91.

    Article  Google Scholar 

  18. Zorrilla-Vaca A, Healy RJ, Mirski MA. A comparison of regional versus general anesthesia for lumbar spine surgery: a meta-analysis of randomized studies. J Neurosurg Anesthesiol. 2017;29(4):415–25.

    Article  Google Scholar 

  19. Sharrock NE. Lumbar spine fusion performed with hypotensive thoracic epidural anesthesia. Tech Reg Anesth Pain Manag. 1999;3(4):233–5.

    Article  Google Scholar 

  20. Gessler F, Mutlak H, Tizi K, Senft C, Setzer M, Seifert V, Weise L. Postoperative patient-controlled epidural analgesia in patients with spondylodiscitis and posterior spinal fusion surgery. J Neurosurg Spine. 2016;24(6):965–70.

    Article  Google Scholar 

  21. Wenk M, Liljenqvist U, Kaulingfrecks T, Gurlit S, Ermert T, Popping DM, Mollmann M. Intra- versus postoperative initiation of pain control via a thoracic epidural catheter for lumbar spinal fusion surgery: a randomised trial. Minerva Anestesiol. 2017;84(7):796–802. https://doi.org/10.23736/s0375-9393.17.12136-x.

    Article  PubMed  Google Scholar 

  22. Tian P, Fu X, Li ZJ, Ma XL. Comparison of patient-controlled epidural analgesia and patient-controlled intravenous analgesia after spinal fusion surgery: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord. 2015;16:388.

    Article  Google Scholar 

  23. Wang H, Ma L, Yang D, Wang T, Wang Q, Zhang L, Ding W. Cervical plexus anesthesia versus general anesthesia for anterior cervical discectomy and fusion surgery: a randomized clinical trial. Medicine. 2017;96(7):e6119.

    Article  CAS  Google Scholar 

  24. Mariappan R, Mehta J, Massicotte E, Nagappa M, Manninen P, Venkatraghavan L. Effect of superficial cervical plexus block on postoperative quality of recovery after anterior cervical discectomy and fusion: a randomized controlled trial. Can J Anesth. 2015;62(8):883.

    Article  Google Scholar 

  25. He-Jiang Z, Tian-de Y, Jing H. Clinical study of cervical plexus block in combination with general anesthesia in patients undergoing anterior cervical spine surgery. Chongqing Med. 2010;19:025.

    Google Scholar 

  26. Liu D-H, Cai P, Liang J-Q, Feng Z-H, Lu X-Q, Zhang K-J. The efficacy of combination of general anesthesia and unilateral cervical plexus nerve block for anterior cervical spine surgery. Guide Chin Med. 2009;13:026.

    Google Scholar 

  27. Yuan QM, Zhao ZH, Xu BS. Efficacy and safety of tranexamic acid in reducing blood loss in scoliosis surgery: a systematic review and meta-analysis. Eur Spine J. 2017;26(1):131–9.

    Article  Google Scholar 

  28. Li G, Sun TW, Luo G, Zhang C. Efficacy of antifibrinolytic agents on surgical bleeding and transfusion requirements in spine surgery: a meta-analysis. Eur Spine J. 2017;26(1):140–54.

    Article  Google Scholar 

  29. Yang B, Li H, Wang D, He X, Zhang C, Yang P. Systematic review and meta-analysis of perioperative intravenous tranexamic acid use in spinal surgery. PLoS One. 2013;8(2):e55436.

    Article  CAS  Google Scholar 

  30. Phan K, Dunn AE, Kim JS, Capua JD, Somani S, Kothari P, et al. Impact of preoperative anemia on outcomes in adults undergoing elective posterior cervical fusion. Global Spine J. 2017;7(8):787–93.

    Article  Google Scholar 

  31. Qureshi R, Puvanesarajah V, Jain A, Hassanzadeh H. Perioperative management of blood loss in spine surgery. Clin Spine Surg. 2017;30(9):383–8.

    Article  Google Scholar 

  32. Epstein NE. Bloodless spinal surgery: a review of the normovolemic hemodilution technique. Surg Neurol. 2008;70(6):614–8.

    Article  Google Scholar 

  33. American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Visual Loss. Anesthesiology. 2012;116(2):274–85.

    Article  Google Scholar 

  34. Manrique Espinel AM, Feldman JM, Nelson S, Smaliak T, Flynn JM, Nicolson SC. Anaphylaxis to surgiflo during posterior spinal fusion in an adolescent status post truncus arteriosus repair: a case report. A A Case Rep. 2017;10(6):129–32. https://doi.org/10.1213/xaa.0000000000000646.

    Article  Google Scholar 

  35. Ullrich PF Jr, Keene JS, Hogan KJ, Roecker EB. Results of hypotensive anesthesia in operative treatment of thoracolumbar fractures. J Spinal Disord. 1990;3(4):329–33.

    PubMed  Google Scholar 

  36. Dutton RP. Controlled hypotension for spinal surgery. Eur Spine J. 2004;13(Suppl 1):S66–71.

    Article  Google Scholar 

  37. Tobias JD. Fenoldopam for controlled hypotension during spinal fusion in children and adolescents. Paediatr Anaesth. 2000;10(3):261–6.

    Article  CAS  Google Scholar 

  38. Nahtomi-Shick O, Kostuik JP, Winters BD, Breder CD, Sieber AN, Sieber FE. Does intraoperative fluid management in spine surgery predict intensive care unit length of stay? J Clin Anesth. 2001;13(3):208–12.

    Article  CAS  Google Scholar 

  39. Nicklas JY, Saugel B. Non-invasive hemodynamic monitoring for hemodynamic management in perioperative medicine. Front Med. 2017;4:209.

    Article  Google Scholar 

  40. Bacchin MR, Ceria CM, Giannone S, Ghisi D, Stagni G, Greggi T, Bonarelli S. Goal-directed fluid therapy based on stroke volume variation in patients undergoing major spine surgery in the prone position: a cohort study. Spine. 2016;41(18):E1131–7.

    Article  Google Scholar 

  41. Picard J, Bedague D, Bouzat P, Ollinet C, Albaladejo P, Bosson JL, Payen JF. Oesophageal Doppler to optimize intraoperative haemodynamics during prone position. A randomized controlled trial. Anaesth Crit Care Pain Med. 2016;35(4):255–60.

    Article  Google Scholar 

  42. Park J-H, Hyun S-J. Intraoperative neurophysiological monitoring in spinal surgery. World J Clin Cases. 2015;3(9):765–73.

    Article  Google Scholar 

  43. Nuwer MR, Dawson EG, Carlson LG, Kanim LEA, Sherman JE. Somatosensory evoked potential spinal cord monitoring reduces neurologic deficits after scoliosis surgery: results of a large multicenter survey. Electroencephalogr Clin Neurophysiol. 1995;96(1):6–11.

    Article  CAS  Google Scholar 

  44. Trafidlo T, Gaszynski T, Gaszynski W, Nowakowska-Domagala K. Intraoperative monitoring of cerebral NIRS oximetry leads to better postoperative cognitive performance: a pilot study. Int J Surg. 2015;16(Pt A):23–30.

    Article  Google Scholar 

  45. Zorrilla-Vaca A, Healy RJ, Grant M, Joshi B, Rivera-Lara L, Brown CH, Mirski MA. Intraoperative cerebral oximetry-based management for optimizing perioperative outcomes: a meta-analysis of randomized controlled trials. Can J Anesth. 2018;65(5):529–42.

    Article  Google Scholar 

  46. Deiner S, Chu I, Mahanian M, Lin HM, Hecht AC, Silverstein JH. Prone position is associated with mild cerebral oxygen desaturation in elderly surgical patients. PLoS One. 2014;9(9):e106387.

    Article  Google Scholar 

  47. Nazemi AK, Gowd AK, Carmouche JJ, Kates SL, Albert TJ, Behrend CJ. Prevention and management of postoperative delirium in elderly patients following elective spinal surgery. Clin Spine Surg. 2017;30(3):112–9.

    Article  Google Scholar 

  48. Li YN, Zhang Q, Yin CP, Guo YY, Huo SP, Wang L, Wang QJ. Effects of nimodipine on postoperative delirium in elderly under general anesthesia: a prospective, randomized, controlled clinical trial. Medicine. 2017;96(19):e6849.

    Article  CAS  Google Scholar 

  49. Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, Domino KB. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9.

    Article  Google Scholar 

  50. Warner MA. Postoperative visual loss: experts, data, and practice. Anesthesiology. 2006;105(4):641–2.

    Article  Google Scholar 

  51. Larson CP Jr. Excessive crystalloid infusion may contribute to ischemic optic neuropathy. Anesthesiology. 2007;106(6):1249.. author reply 1251–2.

    Article  Google Scholar 

  52. Kurd MF, Kreitz T, Schroeder G, Vaccaro AR. The role of multimodal analgesia in spine surgery. J Am Acad Orthop Surg. 2017;25(4):260–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Zorrilla-Vaca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zorrilla-Vaca, A., Grant, M.C., Mirski, M.A. (2019). Anesthesia for Spine Surgery. In: Prabhakar, H., Ali, Z. (eds) Textbook of Neuroanesthesia and Neurocritical Care. Springer, Singapore. https://doi.org/10.1007/978-981-13-3387-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3387-3_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3386-6

  • Online ISBN: 978-981-13-3387-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics