Anesthesia for Pituitary Lesions

  • Tullio Cafiero


The goal of this chapter is to provide the anesthesiologists with detailed information about the anesthetic management in patients undergoing surgery for the treatment of the pituitary diseases. The peculiar features of the underlying endocrine disturbances are illustrated. Knowledge of anatomy and pathophysiology of the pituitary gland is paramount to understand the potential complications: pituitary gland function and signs and symptoms of pituitary tumors related both to hormonal hypersecretion and hyposecretion syndromes are illustrated. Pituitary surgery has evolved over the last two decades from an open transcranial surgery to the minimally invasive endoscopic endonasal approach: surgical techniques of pituitary tumors and their advantages and disadvantages are briefly summarized. In those patients complaining of a pituitary adenoma, preoperative endocrinological assessment and tailored management strategies are required to reduce the morbidity related to the surgical pituitary procedure itself, above all, upon anesthetic issues. Therefore, multidisciplinary team case discussion is of utmost importance to rule out the optimal therapeutic option before surgery. Different anesthetic modalities and drugs can be used adequately in the intraoperative period avoiding complications and thus providing an uneventful recovery. The main goals of the anesthetic treatment include the hemodynamic stability, airway management, quick and smooth awakening at the end of surgical procedure, and prevention of intra- and postoperative complications. Anesthetic management with particular attention to that of patients suffering from acromegaly and Cushing disease is outlined. Finally, the main postoperative issues are illustrated: usually, after undergoing an endoscopic endonasal procedure, patients don’t require intensive care unit admission, unless in extraordinary conditions and/or depending on preexisting comorbidities. In these patients, the postoperative issues are mainly related to airways management, pain management, neurological and endocrine status, and fluid balance control. Endocrine disorders include hypopituitarism, diabetes insipidus, and inappropriate secretion of antidiuretic hormone.


Acromegaly Anesthesia Brain Cushing disease Intravenous anesthesia Neuroendocrine Neurological Obstructive sleep apnea Pituitary neoplasms Pituitary surgery 



The author would like to thank Prof Paolo Cappabianca, Prof Luigi Maria Cavallo, and Dr Domenico Solari at the Division of Neurosurgery of Università degli Studi di Napoli Federico II, for having shared their experience and work all along the case series. Further, they have been a precious asset in the English language assistance and iconographic section.


  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenne C, editors. WHO classification of tumours of the central nervous system. 4th ed. Lyon: IARC; 2016.Google Scholar
  2. 2.
    Del Basso De Caro M, Solari D, Pagliuca F, et al. Atypical pituitary adenomas: clinical characteristics and role of ki-67 and p53 in prognostic and therapeutic evaluation. A series of 50 patients. Neurosurg Rev. 2017;40(1):105–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Carroll PV, Jenkins PJ. Acromegaly. In: De Groot LJ, Chrousos G, Dungan K, Feingold KR, Grossman A, Hershman JM, et al., eds. Endotext. 2016. Accessed 11 June 2018.
  4. 4.
    Asa SL, Kucharczyk W, Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer. 2017;24(3):C1–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Newell-Price J, Bertagna X, Grossman AB, Nieman LK. Cushing’s syndrome. Lancet. 2006;367(9522):1605–17.PubMedCrossRefGoogle Scholar
  6. 6.
    Wang EL, Qian ZR, Yamada S, et al. Clinicopathological characterization of TSH-producing adenomas: special reference to TSH-immunoreactive but clinically non-functioning adenomas. Endocr Pathol. 2009;20(4):209–20.PubMedCrossRefGoogle Scholar
  7. 7.
    Klibanski A. Clinical practice. Prolactinomas. N Engl J Med. 2010;362(13):1219–26.PubMedCrossRefGoogle Scholar
  8. 8.
    Prete A, Corsello SM, Salvatori R. Current best practice in the management of patients after pituitary surgery. Ther Adv Endocrinol Metab. 2017;8(3):33–48.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Laws ER Jr, Onofrio BM, Pearson BW, McDonald TJ, Dirrenberger RAR. Successful management of bilateral carotid-cavernous fistulae with a transsphenoidal approach. Neurosurgery. 1979;4(2):162–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Jankowski R, Auque J, Simon C, Marchal JC, Hepner H, Wayoff M. Endoscopic pituitary tumor surgery. Laryngoscope. 1992;102(2):198–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Jho HD, Carrau R. Endoscopy assisted transsphenoidal surgery for pituitary adenoma. Technical note. Acta Neurochir. 1996;138(12):1416–25.PubMedCrossRefGoogle Scholar
  12. 12.
    Cappabianca P, Alfieri A, de Divitiis E. Endoscopic endonasal transsphenoidal approach to the sella: towards functional endoscopic pituitary surgery (FEPS). Minim Invasive Neurosurg. 1998;41(2):66–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuan EC, Yoo F, Kim W, Badran KW, Heineman TE, Sepahdari AR, Bergsneider M, Wang MB. Anatomic variations in pituitary endocrinopathies: implications for the surgical corridor. J Neurol Surg B Skull Base. 2017;78(2):105–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Cappabianca P, Alfieri A, Coloa A. Endoscopic endonasal transsphenoidal surgery in recurrent and residual pituitary adenomas: technical note. Minim Invasive Neurosurg. 2000;43(1):38–43.PubMedCrossRefGoogle Scholar
  15. 15.
    de Divitiis E. Endoscopic transsphenoidal surgery: stone-in-the-pond effect. Neurosurgery. 2006;59(3):512–20.PubMedCrossRefGoogle Scholar
  16. 16.
    Cappabianca P, Cavallo LM, de Divitiis E. Endoscopic endonasal transsphenoidal surgery. Neurosurgery. 2004;55(4):933–40.. discussion 940–1.PubMedCrossRefGoogle Scholar
  17. 17.
    Cavallo LM, Dal Fabbro M, Jalalod’din H, Messina A, Esposito I, Esposito F, et al. Endoscopic endonasal transsphenoidal surgery. Before scrubbing in: tips and tricks. Surg Neurol. 2007;67:342–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Louis RG, Pouratian AG, Jane JA Jr. Endoscopic approaches for pituitary tumors. In: Kassam AB, Gardner PA, editors. Endoscopic approaches for skull base. Basel, Switzerland: S. Karger AG; 2012. p. 60–75.CrossRefGoogle Scholar
  19. 19.
    Leach P, Abou-Zeid AH, Kearney T, Davis J, Trainer PJ, Gnanalingham KK. Endoscopic transsphenoidal pituitary surgery: evidence of an operative learning curve. Neurosurgery. 2010;67(5):1205–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Ali Z, Prabhakar H, Bithal PK, Dash HH. Bispectral index-guided administration of anesthesia for transsphenoidal resection of pituitary tumors: a comparison of 3 anesthetic techniques. J Neurosurg Anesthesiol. 2009;21(1):10–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Cafiero T, Mastronardi P, Gargiulo G, Cappabianca P, Cavallo LM. Intraoperative analgesia with remifentanil for the endonasal endoscopic approach to pituitary lesions. Anesthesiology. 2002;96:A70.CrossRefGoogle Scholar
  22. 22.
    Chelliah YR, Manninen PH. Hazards of epinephrine in transsphenoidal pituitary surgery. J Neurosurg Anesthesiol. 2002;14(1):43–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Pasternak JJ, Atkinson JL, Kasperbauer JL, Lanier WL. Hemodynamic responses to epinephrine-containing local anesthetic injection and to emergence from general anesthesia in transsphenoidal hypophysectomy patients. J Neurosurg Anesthesiol. 2004;16(3):189–95.PubMedCrossRefGoogle Scholar
  24. 24.
    Cafiero T, Cavallo LM, Frangiosa A, Burrelli R, Gargiulo G, Cappabianca P, de Divitiis E. Clinical comparison of remifentanil-sevoflurane vs. remifentanil-propofol for endoscopic endonasal transsphenoidal surgery. Eur J Anaesthesiol. 2007;24(5):441–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Hristovska AM, Duch P, Allingstrup M, Afshari A. Efficacy and safety of sugammadex versus neostigmine in reversing neuromuscular blockade in adults. Cochrane Database Syst Rev. 2017;8:CD012763.PubMedGoogle Scholar
  26. 26.
    Ünal DY, Baran İ, Mutlu M, Ural G, Akkaya T, Özlü O. Comparison of sugammadex versus neostigmine costs and respiratory complications in patients with obstructive sleep apnoea. Turk J Anaesthesiol Reanim. 2015;43(6):387–95.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Laws ER. Surgery for acromegaly: evolution of the techniques and outcomes. Rev Endocr Metab Disord. 2008;9(1):67–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Marquez Y, Tuchman A, Zada G. Surgery and radiosurgery for acromegaly: a review of indications, operative techniques, outcomes, and complications. Int J Endocrinol. 2012;2012:386401.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Friedel ME, Johnston DR, Singhal S, Al Khalili K, Farrell CJ, Evans JJ, Nyquist GG, Rosen MR. Airway management and perioperative concerns in acromegaly patients undergoing endoscopic transsphenoidal surgery for pituitary tumors. Otolaryngol Head Neck Surg. 2013;149(6):840–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Nemergut EC, Zuo Z. Airway management in patients with pituitary disease: a review of 746 patients. J Neurosurg Anesthesiol. 2006;18(1):73–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Guo X, Pei L, Zhang Z, Tan G, Xing B. High levels of IGF-1 predict difficult intubation of patients with acromegaly. Endocrine. 2017;57(2):326–34.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bindra A, Prabhakar H, Bithal PK, Singh GP, Chowdhury T. Predicting difficult laryngoscopy in acromegalic patients undergoing surgery for excision of pituitary tumors: a comparison of extended Mallampati score with modified Mallampati classification. J Anaesthesiol Clin Pharmacol. 2013;29(2):187–90.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Law-Koune JD, Liu N, Szekely B, Fischler M. Using the intubating laryngeal mask airway for ventilation and endotracheal intubation in anesthetized and unparalyzed acromegalic patients. J Neurosurg Anesthesiol. 2004;16(1):11–3.PubMedCrossRefGoogle Scholar
  34. 34.
    Paolini JB, Donati F, Drolet P. Review article: video-laryngoscopy: another tool for difficult intubation or a new paradigm in airway management? Can J Anaesth. 2013;60(2):184–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Agro FE, Vennari M. The videolaryngoscopes are now the first choice to see around the corner. Minerva Anestesiol. 2016;82(12):1247–9.PubMedGoogle Scholar
  36. 36.
    Cafiero T, Esposito F, Fraioli G, Gargiulo G, Frangiosa A, Cavallo LM, Mennella N, Cappabianca P. Remifentanil-TCI and propofol-TCI for conscious sedation during fibreoptic intubation in the acromegalic patient. Eur J Anaesthesiol. 2008;25(8):670–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Clayton RN. Cardiovascular function in acromegaly. Endocr Rev. 2003;24(3):272–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Srinivasan A, Bahl A, Bhagat H, Dutta P, Rai A, Devgun JS, Kaur R, Mukherjee KK. Impact of transsphenoidal surgery on asymptomatic cardiomyopathy in patients with acromegaly. A single-blinded study. Neurol India. 2017;65(6):1312–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Chung SY, Sylvester MJ, Patel VR, Zaki M, Baredes S, Liu JK, Eloy JA. Impact of obstructive sleep apnea in transsphenoidal pituitary surgery: an analysis of inpatient data. Laryngoscope. 2018;128(5):1027–32.PubMedCrossRefGoogle Scholar
  40. 40.
    Molitch ME. Diagnosis and treatment of pituitary adenomas: a review. JAMA. 2017;317(5):516–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Debono M, Newell-Price JD. Cushing’s syndrome: where and how to find it. Front Horm Res. 2016;46:15–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Wagner-Bartak NA, Baiomy A, Habra MA, Mukhi SV, Morani AC, Korivi BR, Waguespack SG, Elsayes KM. Cushing syndrome: diagnostic workup and imaging features, with clinical and pathologic correlation. AJR Am J Roentgenol. 2017;209(1):19–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Pekic S, Popovic V. Diagnosis of endocrine disease: expanding the cause of hypopituitarism. Eur J Endocrinol. 2017;176(6):R269–82.PubMedCrossRefGoogle Scholar
  44. 44.
    Johnston PC, Kennedy L, Hamrahian AH, Sandouk Z, Bena J, Hatipoglu B, Weil RJ. Surgical outcomes in patients with Cushing’s disease: the Cleveland clinic experience. Pituitary. 2017;20(4):430–40.PubMedCrossRefGoogle Scholar
  45. 45.
    Czirják S, Bezzegh A, Gál A, Rácz K. Intra- and postoperative plasma ACTH concentrations in patients with Cushing’s disease cured by transsphenoidal pituitary surgery. Acta Neurochir. 2002;144(10):971–7.. discussion 977.PubMedCrossRefGoogle Scholar
  46. 46.
    Marchand L, Segrestin B, Lapoirie M, Favrel V, Dementhon J, Jouanneau E, Raverot G. Dilated cardiomyopathy revealing Cushing disease: a case report and literature review. Medicine (Baltimore). 2015;94(46):e2011.CrossRefGoogle Scholar
  47. 47.
    Lambert JK, Goldberg L, Fayngold S, Kostadinov J, Post KD, Geer EB. Predictors of mortality and long-term outcomes in treated Cushing’s disease: a study of 346 patients. J Clin Endocrinol Metab. 2013;98(3):1022–30.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Isidori AM, Graziadio C, Paragliola RM, Cozzolino A, Ambrogio AG, Colao A, et al. The hypertension of Cushing’s syndrome: controversies in the pathophysiology and focus on cardiovascular complications. J Hypertens. 2015;33(1):44–60.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Heaney AP, Hunter SJ, Sheridan B, Brew Atkinson A. Increased pressor response to noradrenaline in pituitary dependent Cushing’s syndrome. Clin Endocrinol. 1999;51(3):293–9.CrossRefGoogle Scholar
  50. 50.
    Tack LJ, Tatsi C, Stratakis CA, Lodish MB. Effects of glucocorticoids on bone: what we can learn from pediatric endogenous Cushing’s syndrome. Horm Metab Res. 2016;48(11):764–70.PubMedCrossRefGoogle Scholar
  51. 51.
    Giugni AS, Mani S, Kannan S, Hatipoglu B. Exophthalmos: a forgotten clinical sign of Cushing’s syndrome. Case Rep Endocrinol. 2013;2013:205208.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Wang LU, Wang TY, Bai YM, Hsu JW, Huang KL, Su TP, et al. Risk of obstructive sleep apnea among patients with Cushing’s syndrome: a nationwide longitudinal study. Sleep Med. 2017;36:44–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Ghirardello S, Hopper N, Albanese A, Maghnie M. Diabetes insipidus in craniopharyngioma: postoperative management of water and electrolyte disorders. J Pediatr Endocrinol Metab. 2006;19(Suppl. 1):413–21.PubMedGoogle Scholar
  54. 54.
    Finken MJ, Zwaveling-Soonawala N, Walenkamp MJ, Vulsma T, van Trotsenburg AS, Rotteveel J. Frequent occurrence of the triphasic response (diabetes insipidus/hyponatremia/diabetes insipidus) after surgery for craniopharyngioma in childhood. Horm Res Paediatr. 2011;76(1):22–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Hussain NS, Piper M, Ludlam WG, Ludlam WH, Fuller CJ, Mayberg MR. Delayed postoperative hyponatremia after transsphenoidal surgery: prevalence and associated factors. J Neurosurg. 2013;119(6):1453–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Adrogué HJ, Madias NE. The challenge of hyponatremia. J Am Soc Nephrol. 2012;23(7):1140–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Ishiguro T, Ishihara T, Hatano Y, Abe T, Shimohata T, Nishizawa M. A case of central pontine and extrapontine myelinolysis after surgery for a pituitary tumor. Rinsho Shinkeigaku. 2017;57(1):21–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Berl T, Rastegar A. A patient with severe hyponatremia and hypokalemia: osmotic demyelination following potassium repletion. Am J Kidney Dis. 2010;55(4):742–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Gralla RJ, Ahmad F, Blais JD, Chiodo J 3rd, Zhou W, Glaser LA, Czerwiec FS. Tolvaptan use in cancer patients with hyponatremia due to the syndrome of inappropriate antidiuretic hormone: a post hoc analysis of the SALT-1 and SALT-2 trials. Cancer Med. 2017;6(4):723–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tullio Cafiero
    • 1
  1. 1.Department of Anesthesia and Postoperative Intensive CareAntonio Cardarelli HospitalNapoliItaly

Personalised recommendations