Skip to main content

CMOS-Compatible Silicon Electro-Optic Modulator

  • Chapter
  • First Online:
  • 1052 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter, we have studied the pure silicon electro-optic modulation devices compatible with CMOS process. First, the latest development of pure electro-optic modulator based on plasma dispersion effect is introduced. Then, the design theory of pure silicon electro-optic modulator is systematically put forward, and the method of optimizing the size of doping area in the modulator waveguide is introduced through the combination of semiconductor process simulation software and in-house programming. Then, we investigated the equivalent circuit model of carrier-depletion modulator structure with the lateral PN junction, and the extraction of various circuit elements, and optimized the traveling-wave electrode based on theory of microwave transmission line. Finally, processing and characterization of our pure silicon electro-optic modulator with two typical structures were reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gan F (2007) High-speed silicon electro-optic modulator for electronic photonic integrated circuits. PhD diss, Massachusetts Institute of Technology

    Google Scholar 

  2. Soref RA, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron 23:123–129

    Article  Google Scholar 

  3. Lim AEJ, Song J, Fang Q, Li C, Tu X, Duan N, Liow TY (2014) Review of silicon photonics foundry efforts. IEEE J Sel Top Quantum Electron 20:405–416

    Article  Google Scholar 

  4. Rickman A (2014) The commercialization of silicon photonics. Nat Photon 8:579–582

    Article  Google Scholar 

  5. Reed GT, Mashanovich GZ, Gardes FY, Nedeljkovic M, Hu Y, Thomson DJ, Li K, Wilson PR, Chen SW, Hsu SS (2014) Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics 3:229–245

    Google Scholar 

  6. Reed GT, Mashanovich G, Gardes FY, Thomson DJ (2010) Silicon optical modulators. Nat Photonics 4:518–526

    Article  Google Scholar 

  7. Jacobsen RS, Andersen KN, Borel PI, Fage-Pedersen J, Frandsen LH, Hansen O, Kristensen M, Lavrinenko AV, Moulin G, Ou H, Peucheret C (2006) Strained silicon as a new electro-optic material. Nature 441:199–202

    Article  Google Scholar 

  8. Hochberg M, Baehr-Jones T, Wang G, Shearn M, Harvard K, Luo J, Chen B, Shi Z, Lawson R, Sullivan P, Jen AK (2006) Terahertz all-optical modulation in a silicon–polymer hybrid system. Nat Mat 5:703–709

    Article  Google Scholar 

  9. Preston K, Manipatruni S, Gondarenko A, Poitras CB, Lipson M (2009) Deposited silicon high-speed integrated electro-optic modulator. Opt Express 17:5118–5124

    Article  Google Scholar 

  10. Rong Y, Ge Y, Huo Y, Fiorentino M, Tan MR, Kamins TI, Ochalski TJ, Huyet G, Harris JS Jr (2010) Quantum-confined Stark effect in Ge/SiGe quantum wells on Si. IEEE J Sel Top Quantum Electron 16:85–92

    Article  Google Scholar 

  11. Chen HW, Kuo YH, Bowers JE (2008) High speed hybrid silicon evanescent Mach-Zehnder modulator and switch. Opt Express 16:20571–20576

    Article  Google Scholar 

  12. Chen HW, Kuo YH, Bowers JE (2008) A Hybrid silicon-AlGaInAs phase modulator. IEEE Photonics Technol Lett 20:1920–1922

    Article  Google Scholar 

  13. Chen HW, Peters JD, Bowers JE (2011) Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp. Opt Express 19:1455–1460

    Article  Google Scholar 

  14. Tang Y, Chen HW, Jain S, Peters JD, Westergren U, Bowers JE (2011) 50 Gb/s hybrid silicon traveling-wave electroabsorption modulator. Opt Express 19:5811–5816

    Article  Google Scholar 

  15. Tang Y, Peters JD, Bowers JE (2012) Energy-efficient hybrid silicon electroabsorption modulator for 40 Gb/s 1 V uncooled operation. IEEE Photonics Technol Lett 24:1689–1692

    Article  Google Scholar 

  16. Tang Y, Peters JD, Bowers JE (2012) Over 67 GHz bandwidth hybrid silicon electroabsorption modulator with asymmetric segmented electrode for 1.3 \(\upmu \) m transmission. Opt Express 20:11529–11535

    Google Scholar 

  17. Liu J, Beals M, Pomerene A, Bernardis S, Sun R, Cheng J, Kimerling LC, Michel J (2008) Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat Photonics 2:433–437

    Article  Google Scholar 

  18. Lim PH, Cai J, Ishikawa Y, Wada K (2012) Laterally coupled silicon-germanium modulator for passive waveguide systems. Opt Express 37:1496–1498

    Google Scholar 

  19. Feng D, Liao S, Liang H, Fong J, Bijlani B, Shafiiha R, Luff B, Luo Y, Cunningham J, Krishnamoorthy AV, Asghari M (2012) High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide. Opt Express 20:22224–22232

    Article  Google Scholar 

  20. Edwards EH, Lever L, Fei ET, Kamins TI, Ikonic Z, Harris JS, Kelsall RW, Miller DA (2013) Low-voltage broad-band electroabsorption from thin Ge/SiGe quantum wells epitaxially grown on silicon. Opt Express 21:867–876

    Article  Google Scholar 

  21. Wu P, Clarke RE, Novak J, Deng S, McDonald JF, Huang ZR (2013) Ultrashort SiGe heterojunction bipolar transistor-based high-speed optical modulator. IEEE J Sel Top Quantum Electron 19:7900109–7900109

    Article  Google Scholar 

  22. Leuthold J, Koos C, Freude W, Alloatti L, Palmer R, Korn D, Pfeifle J, Lauermann M, Dinu R, Wehrli S, Jazbinsek, M (2013) Silicon-organic hybrid electro-optical devices. IEEE J Sel Top Quantum Electron 19:114–126

    Article  Google Scholar 

  23. Alloatti L, Palmer R, Diebold S, Pahl KP, Chen B, Dinu R, Fournier M, Fedeli JM, Zwick T, Freude W, Koos C (2014) 100 GHz silicon–organic hybrid modulator. Light Sci Appl 3:1–4

    Article  Google Scholar 

  24. Koeber S, Palmer R, Lauermann M, Heni W, Elder DL, Korn D, Woessner M, Alloatti L, Koenig S, Schindler PC, Yu, H (2014) Femtojoule electro-optic modulation using a silicon-organic hybrid device. Light Sci Appl 4:1–8

    Article  Google Scholar 

  25. Gould M, Baehr-Jones T, Ding R, Huang S, Luo J, Jen AKY, Fedeli JM, Fournier M, Hochberg M (2011) Silicon-polymer hybrid slot waveguide ring-resonator modulator. Opt Express 19:3952–3961

    Article  Google Scholar 

  26. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474:64–67

    Article  Google Scholar 

  27. Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler PC, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B (2014) High-speed plasmonic phase modulators. Nat Photonics 8:229–233

    Article  Google Scholar 

  28. Soref RA, Bennett BR (1987) Kramers-Kronig analysis of electro-optical switching in silicon. SPIE Integr Opt Circuit Eng 704:32–37

    Google Scholar 

  29. Manipatruni S, Xu Q, Schmidt B, Shakya J, Lipson M (2007) High speed carrier injection 18 Gb/s silicon micro-ring electro-optic modulator. In: IEEE proceedings for the lasers and electro-optics society, vol 537–538

    Google Scholar 

  30. Manipatruni S, Xu Q, Schmidt B, Shakya J, Lipson M (2004) A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature 427:615–618

    Article  Google Scholar 

  31. Gardes FY, Reed GT, Emerson NG, Png CE (2005) A sub-micron depletion-type photonic modulator in silicon on insulator. Opt Express 13:8845–8854

    Article  Google Scholar 

  32. Liu A, Liao L, Rubin D, Nguyen H, Ciftcioglu B, Chetrit Y, Izhaky N, Paniccia M (2007) High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt Express 15:660–668

    Article  Google Scholar 

  33. Liao L, Liu A, Rubin D, Basak JA, Chetrit YA, Nguyen HA, Cohen RA, Izhaky NA, Paniccia MA (2007) 40 Gbit/s silicon optical modulator for high-speed applications. Electron Lett 43:1196–1197

    Article  Google Scholar 

  34. Dong P, Chen L, Chen YK (2012) High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt Express 20:6163–6169

    Article  Google Scholar 

  35. Thomson DJ, Gardes FY, Fedeli JM, Zlatanovic S, Hu Y, Kuo BP, Myslivets E, Alic N, Radic S, Mashanovich GZ, Reed GT (2012) 50 Gb/s silicon optical modulator. IEEE Photonics Technol Lett 24:234–236

    Article  Google Scholar 

  36. You JB, Park M, Park JW, Kim G (2008) 12.5 Gbps optical modulation of silicon racetrack resonator based on carrier-depletion in asymmetric pn diode. Opt Express 16:18340–18344

    Article  Google Scholar 

  37. Xiao X, Xu H, Li X, Li Z, Chu T, Yu Y, Yu J (2013) High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express 21:4116–4125

    Article  Google Scholar 

  38. Yi H, Long Q, Tan W, Li L, Wang X, Zhou Z (2012) Demonstration of low power penalty of silicon Mach-Zehnder modulator in long-haul transmission. Opt Express 20:27562–27568

    Article  Google Scholar 

  39. Gardes FY, Brimont A, Sanchis P, Rasigade G, Marris-Morini D, O’Faolain L, Dong F, Fedeli JM, Dumon P, Vivien L, Krauss TF (2009) High-speed modulation of a compact silicon ring resonator based on a reverse-biased pn diode. Opt Express 17:21986–21991

    Article  Google Scholar 

  40. Rasigade G, Marris-Morini D, Vivien L, Cassan E (2010) Performance evolutions of carrier depletion silicon optical modulators: from PN to PIPIN diodes. IEEE J Sel Top Quantum Electron 16:179–184

    Google Scholar 

  41. Rasigade G, Marris-Morini D, Ziebell M, Cassan E, Vivien L (2011) Analytical model for depletion-based silicon modulator simulation. Opt Express 19:3919–3924

    Article  Google Scholar 

  42. Marris-Morini D, Vivien L, Fédéli JM, Cassan E, Lyan P, Laval S (2008) Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. Opt Express 16:334–339

    Article  Google Scholar 

  43. Rasigade G, Ziebell M, Marris-Morini D, Fédéli JM, Milesi F, Grosse P, Bouville D, Cassan E, Vivien L (2011) High extinction ratio 10 Gbit/s silicon optical modulator. Opt Express 19:5827–5832

    Article  Google Scholar 

  44. Gutierrez AM, Brimont A, Rasigade G, Ziebell M, Marris-Morini D, Fedeli JM, Vivien L, Marti J, Sanchis P (2012) Ring-assisted Mach-Zehnder interferometer silicon modulator for enhanced performance. J Light Technol 30:9–14

    Article  Google Scholar 

  45. Rasigade G, Ziebell M, Marris-Morini D, Brimont A, Campo AG, Sanchis P, Fédéli JM, Duan GH, Cassan E, Vivien L: 10 Gb/s error-free silicon optical modulator for both TE and TM polarized light. J Light Technol 23:1799–1801

    Article  Google Scholar 

  46. Marris-Morini D, Baudot C, Fédéli JM, Rasigade G, Vulliet N, Souhaité A, Ziebell M, Rivallin P, Olivier S, Crozat P, Le Roux X (2013) Low loss 40 Gbit/s silicon modulator based on interleaved junctions and fabricated on 300 mm SOI wafers. Opt Express 21:22471–22475

    Article  Google Scholar 

  47. Tu X, Liow TY, Song J, Yu M, Lo GQ (2011) Fabrication of low loss and high speed silicon optical modulator using doping compensation method. Opt Express 19:18029–18035

    Article  Google Scholar 

  48. Tu X, Liow TY, Song J, Luo X, Fang Q, Yu M, Lo GQ (2013) 50 Gb/s silicon optical modulator with traveling-wave electrodes. Opt Express 21:12776–12782

    Article  Google Scholar 

  49. Yang Y, Fang Q, Yu M, Tu X, Rusli R, Lo GQ (2014) High-efficiency Si optical modulator using Cu travelling-wave electrode. Opt Express 22:29978–29985

    Article  Google Scholar 

  50. Thomson DJ, Gardes FY, Reed GT, Milesi F, Fedeli JM (2010) High speed silicon optical modulator with self aligned fabrication process. Opt Express 18:19064–19069

    Article  Google Scholar 

  51. Thomson DJ, Gardes FY, Reed GT, Milesi F, Fedeli JM (2011) 40 Gb/s silicon photonics modulator for TE and TM polarisations. Opt Express 19:11804–11814

    Article  Google Scholar 

  52. Thomson DJ, Gardes FY, Liu S, Porte H, Zimmermann L, Fedeli JM, Hu Y, Nedeljkovic M, Yang X, Petropoulos P, Mashanovich GZ (2013) High performance Mach-Zehnder-based silicon optical modulators. IEEE J Sel Top Quantum Electron 19:85–94

    Article  Google Scholar 

  53. Thomson DJ, Gardes FY, Hu Y, Mashanovich G, Fournier M, Grosse P, Fedeli JM, Reed GT (2011) High contrast 40 Gbit/s optical modulation in silicon. Opt Express 19:11507–11516

    Article  Google Scholar 

  54. Li ZY, Xu DX, McKinnon WR, Janz S, Schmid JH, Cheben P, Yu JZ (2009) Silicon waveguide modulator based on carrier depletion in periodically interleaved PN junctions. Opt Express 17:15947–15958

    Article  Google Scholar 

  55. Hu Y, Xiao X, Xu H, Li X, Xiong K, Li Z, Chu T, Yu Y, Yu J (2012) High-speed silicon modulator based on cascaded microring resonators. Opt Express 20:15079–15085

    Article  Google Scholar 

  56. Xiao X, Xu H, Li X, Hu Y, Xiong K, Li Z, Chu T, Yu Y, Yu J (2012) 25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions. Opt Express 20:2507–2515

    Article  Google Scholar 

  57. Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J (2012) High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Opt Express 20:15093–15099

    Article  Google Scholar 

  58. Hao X, Xian-Yao L, Xi X, Zhi-Yong L, Yu-De Y, Jin-Zhong Y (2013) High-speed and broad optical bandwidth silicon modulator. Chin Phys B 22:114212–114216

    Article  Google Scholar 

  59. Xu H, Li X, Xiao X, Li Z, Yu Y, Yu J (2014) Demonstration and characterization of high-speed silicon depletion-mode Mach-Zehnder modulators. IEEE J Sel Top Quantum Electron 20:23–32

    Article  Google Scholar 

  60. Yu H, Pantouvaki M, Van Campenhout J, Korn D, Komorowska K, Dumon P, Li Y, Verheyen P, Absil P, Alloatti L, Hillerkuss D (2012) Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators. Opt Express 20:12926–12938

    Article  Google Scholar 

  61. Pantouvaki M, Yu H, Rakowski M, Christie P, Verheyen P, Lepage G, Van Hoovels N, Absil P, Van Campenhout J (2013) Comparison of silicon ring modulators with interdigitated and lateral PN junctions. IEEE J Sel Top Quantum Electron 19:7900308–7900308

    Article  Google Scholar 

  62. Ziebell M, Marris-Morini D, Rasigade G, Crozat P, Fédéli JM, Grosse P, Cassan E, Vivien L (2011) Ten Gbit/s ring resonator silicon modulator based on interdigitated PN junctions. Opt Express 19:14690–14695

    Article  Google Scholar 

  63. Xiao X, Li X, Xu H, Hu Y, Xiong K, Li Z, Chu T, Yu J, Yu Y (2012) 44-Gb/s silicon microring modulators based on zigzag PN junctions. Opt Express 24:1712–1714

    Article  Google Scholar 

  64. Spector SJ, Sorace CM, Geis MW, Grein ME, Yoon JU, Lyszczarz TM, Kartner FX (2010) Operation and optimization of silicon-diode-based optical modulators. IEEE J Sel Top Quantum Electron 16:165–172

    Article  Google Scholar 

  65. Liow TY, Song J, Tu X, Lim AE, Fang Q, Duan N, Yu M, Lo GQ (2013) Silicon optical interconnect device technologies for 40 Gb/s and beyond. IEEE J Sel Top Quantum Electron 19:8200312–8200312

    Article  Google Scholar 

  66. Rosenberg JC, Green WM, Assefa S, Gill DM, Barwicz T, Yang M, Shank SM, Vlasov YA (2012) A 25 Gbps silicon microring modulator based on an interleaved junction. Opt Express 20:26411–26423

    Article  Google Scholar 

  67. Gill DM, Patel SS, Rasras M, Tu KY, White AE, Chen YK, Pomerene A, Carothers D, Kamocsai RL, Hill CM, Beattie J (2010) CMOS-compatible Si-ring-assisted Mach-Zehnder interferometer with internal bandwidth equalization. J IEEE J Sel Top Quantum Electron 16:45–52

    Article  Google Scholar 

  68. Li X, Xiao X, Xu H, Li Z, Chu T, Yu J, Yu Y (2013) Highly efficient silicon Michelson interferometer modulators. IEEE J Sel Top Quantum Electron 25:407–409

    Google Scholar 

  69. Patel D, Veerasubramanian V, Ghosh S, Samani A, Zhong Q, Plant DV (2014) Highly efficient silicon Michelson interferometer modulators. Opt Express 22:26788–26802

    Article  Google Scholar 

  70. Yu H, Pantouvaki M, Dwivedi S, Verheyen P, Lepage G, Baets R, Bogaerts W, Absil P, Van Campenhout J (2013) Compact thermally tunable silicon racetrack modulators based on an asymmetric waveguide. IEEE Photonics Technol Lett 25:159–162

    Article  Google Scholar 

  71. Timurdogan E, Sorace-Agaskar CM, Sun J, Hosseini ES, Biberman A, Watts MR (2014) An ultralow power athermal silicon modulator. Nat Commun 5:1–11

    Article  Google Scholar 

  72. Rabus DG (2014) Integrated ring resonators. Springer, Berlin

    Google Scholar 

  73. Li G, Krishnamoorthy AV, Shubin I, Yao J, Luo Y, Thacker H, Zheng X, Raj K, Cunningham JE (2013) Ring resonator modulators in silicon for interchip photonic links. IEEE J Sel Top Quantum Electron 19:95–113

    Article  Google Scholar 

  74. Ogawa K, Goi K, Tan YT, Liow TY, Tu X, Fang Q, Lo GQ, Kwong DL (2011) Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps. Opt Express 19:B26–B31

    Article  Google Scholar 

  75. Wang J, Qiu C, Li H, Ling W, Li L, Pang A, Sheng Z, Wu A, Wang X, Zou S, Gan F (2013) Optimization and demonstration of a large-bandwidth carrier-depletion silicon optical modulator. J Lightw Technol 31:4119-4125

    Article  Google Scholar 

  76. Yu H, Bogaerts W (2012) An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators. J Lightw Technol 30:1602–1609

    Article  Google Scholar 

  77. Chang WH (1976) Analytical IC metal-line capacitance formulas. IEEE Trans Microw Theory Tech 24:608–611

    Article  Google Scholar 

  78. Heinrich W (1993) Quasi-TEM description of MMIC coplanar lines including conductor loss effects. IEEE Trans Microw Theory Tech 41:45–52

    Article  Google Scholar 

  79. Sheng Z, Wang Z, Qiu C, Li L, Pang A, Wu A, Wang X, Zou S, Gan F (2012) A compact and low-loss MMI coupler fabricated with CMOS technology. IEEE Photonics J 4:2272–2277

    Google Scholar 

  80. Qiu C, Sheng Z, Li H, Liu W, Li L, Pang A, Wu A, Wang X, Zou S, Gan F (2014) Fabrication, characterization and loss analysis of silicon nanowaveguides. J Lightw Technol 32:2303–2307

    Article  Google Scholar 

  81. Neamen DA (2003) Semiconductor physics and devices: basic principles. McGraw Hill

    Google Scholar 

  82. Dong P, Liao S, Liang H, Qian W, Wang X, Shafiiha R, Feng D, Li G, Zheng X, Krishnamoorthy AV, Asghari M (2010) High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage. Opt Lett 35:3246–3248

    Article  Google Scholar 

  83. Watts MR, Zortman WA, Trotter DC, Young RW, Lentine AL (2010) Low-voltage, compact, depletion-mode, silicon Mach-Zehnder modulator. IEEE J Sel Top Quantum Electron 16:159–164

    Article  Google Scholar 

  84. Baehr-Jones T, Ding R, Liu Y, Ayazi A, Pinguet T, Harris NC, Streshinsky M, Lee P, Zhang Y, Lim AE, Liow TY (2012) Ultralow drive voltage silicon traveling-wave modulator. Opt Express 20:12014–12020

    Article  Google Scholar 

  85. Ding J, Ji R, Zhang L, Yang L (2013) Electro-optical response analysis of a 40 Gb/s silicon Mach-Zehnder optical modulator. J Lightw Technol 31:2434–2440

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J. (2019). CMOS-Compatible Silicon Electro-Optic Modulator. In: CMOS-Compatible Key Engineering Devices for High-Speed Silicon-Based Optical Interconnections. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-3378-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3378-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3377-4

  • Online ISBN: 978-981-13-3378-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics