Skip to main content

Fullerene-Free Molecular Acceptors for Organic Photovoltaics

  • Chapter
  • First Online:
Advances in Solar Energy Research

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Solution-processed bulk-heterojunction solar cells (BHJSCs) are the focus of photovoltaic research for the last 20 years due to new materials development, bandgap tunability through molecular design, high efficiency, and cost-effective fabrication and optimization. Much attention has been paid to the design and development of donor materials whereas the development of new electron accepting materials is at its infancy. For a long time fullerene and its derivatives have dominated the field as electron acceptor materials. In last few years, a significant progress has been made towards the development of fullerene-free acceptors (FFA) which in combination with conjugated polymers/oligomers as the donors reached power conversion efficiencies (PCE) up to 14% and exceed those of the fullerene-based OSCs. These sharp growth in PCE makes OSCs as one of the fastest growing solar technology. Specifically, in these devices the choice of FFAs and corresponding complementary donor materials plays critical role in achieving high efficiencies. This chapter summarizes recent development in the design principles of FFAs for BHJSCs. The role of FFAs in binary and ternary devices is discussed as a way to improve the device performance. A special attention is paid to the structure-activity relationships with the device performance and an approach for efficiency enhancement of OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ameri T, Khoram P, Min J, Brabec CJ (2013) Organic ternary solar cells: a review. Adv Mater 25(31):4245–4266

    Article  Google Scholar 

  • An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9(2):281–322

    Article  Google Scholar 

  • An Q, Gao W, Zhang F, Wang J, Zhang M, Wu K, Ma X, Hu Z, Jiao C, Yang C (2018) Energy level modulation of non-fullerene acceptors enables efficient organic solar cells with small energy loss. J Mater Chem A 6(6):2468–2475

    Article  Google Scholar 

  • Badgujar S, Lee G-Y, Park T, Song CE, Park S, Oh S, Shin WS, Moon S-J, Lee J-C, Lee SK (2016a) High-performance small molecule via tailoring intermolecular interactions and its application in large-area organic photovoltaic modules. Adv Energy Mater 6:1600228

    Article  Google Scholar 

  • Badgujar S, Song CE, Oh S, Shin WS, Moon S-J, Lee J-C, Jung IH, Lee SK (2016b) Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor. J Mater Chem A 4(42):16335–16340

    Article  Google Scholar 

  • Bai H, Wang Y, Cheng P, Wang J, Wu Y, Hou J, Zhan X (2015a) An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. J Mater Chem A 3(5):1910–1914

    Article  Google Scholar 

  • Bai H, Wu Y, Wang Y, Wu Y, Li R, Cheng P, Zhang M, Wang J, Ma W, Zhan X (2015b) Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolylmethylenemalononitrile for polymer solar cells. J Mater Chem A 3(41):20758–20766

    Article  Google Scholar 

  • Baran D, Kirchartz T, Wheeler S, Dimitrov S, Abdelsamie M, Gorman J, Ashraf RS, Holliday S, Wadsworth A, Gasparini N, Kaienburg P, Yan H, Amassian A, Brabec CJ, Durrant JR, McCulloch I (2016a) Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy Environ Sci 9(12):3783–3793

    Article  Google Scholar 

  • Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I (2016b) Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat Mater 16:363–370

    Article  Google Scholar 

  • Bin H, Zhang Z-G, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y (2016) Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J Am Chem Soc 138(13), 4657–4664

    Article  Google Scholar 

  • Bin H, Gao L, Zhang Z-G, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y (2016) 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat Commun 7:13651

    Article  Google Scholar 

  • Bin H, Yang Y, Zhang Z-G, Ye L, Ghasemi M, Chen S, Zhang Y, Zhang C, Sun C, Xue L, Yang C, Ade H, Li Y (2017) 9.73% Efficiency nonfullerene all organic small molecule solar cells with absorption-complementary donor and acceptor. J Am Chem Soc 139(14):5085–5094

    Article  Google Scholar 

  • Brabec C, Dyakonov V, Scherf U (eds) (2014) Organic photovoltaics—materials, device physics and manufacturing technologies, 2nd edn. Wiley-VCH verlag, Weinheim

    Google Scholar 

  • Cai Y, Huo L, Sun X, Wei D, Tang M, Sun Y (2015) High performance organic solar cells based on a twisted bay-substituted tetraphenyl functionalized perylenediimide electron acceptor. Adv Energy Mater 5(11):1500032

    Article  Google Scholar 

  • Cai Y, Huo L, Sun Y (2017) Recent advances in wide-bandgap photovoltaic polymers. Adv Mater 29(22):1605437

    Article  Google Scholar 

  • Chang S-L, Cao F-Y, Huang W-C, Huang P-K, Hsu C-S, Cheng Y-J (2018a) Highly efficient inverted d:a1:a2 ternary blend organic photovoltaics combining a ladder-type non-fullerene acceptor and a fullerene acceptor. ACS Appl Mater Interfaces 9(29):24797–24803

    Article  Google Scholar 

  • Chang M, Wang Y, Yi Y-Q-Q, Ke X, Wan X, Li C, Chen Y (2018b) Fine-tuning the side-chains of non-fullerene small molecule acceptors to match with appropriate polymer donors. J Mater Chem A 6(18):8586–8594

    Article  Google Scholar 

  • Chen K-S, Salinas J-F, Yip H-L, Huo L, Hou J, Jen AKY (2012) Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ Sci 5:9551–9557

    Article  Google Scholar 

  • Chen Y, Wan X, Long G (2013) High performance photovoltaic applications using solution-processed small molecules. Acc Chem Res 46(11):2645–2655

    Article  Google Scholar 

  • Chen Y, Qin Y, Wu Y, Li C, Yao H, Liang N, Wang X, Li W, Ma W, Hou J (2017a) From binary to ternary: Improving the external quantum efficiency of small-molecule acceptor-based polymer solar cells with a minute amount of fullerene sensitization. Adv Energy Mater 7:1700328

    Article  Google Scholar 

  • Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu Z-G, Huang H (2017b) Tuning Voc for high performance organic ternary solar cells with non-fullerene acceptor alloys. J Mater Chem A 5(37):19697–19702

    Article  Google Scholar 

  • Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109(11):5868–5923

    Article  Google Scholar 

  • Cheng P, Li Y, Zhan X (2014) Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electron-cascade acceptor. Energy Environ Sci 7:2005–2011

    Article  Google Scholar 

  • Cheng P, Zhang M, Lau T-K, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X (2017) Realizing small energy loss of 0.55 ev, high open‐circuit voltage >1 V and high efficiency >10% in fullerene‐free polymer solar cells via energy driver. Adv Mater 29(11):1605216

    Article  Google Scholar 

  • Coughlin JE, Henson ZB, Welch GC, Bazan GC (2014) Design and synthesis of molecular donors for solution-processed high-efficiency organic solar cells. Acc Chem Res 47(1):257–270

    Article  Google Scholar 

  • Dai S, Zhao F, Zhang Q, Lau T-K, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X (2017) Fused nonacyclic electron acceptors for efficient polymer solar cells. J Am Chem Soc 139(3):1336–1343

    Article  Google Scholar 

  • Deng D, Zhang Y, Zhang J, Wang Z, Zhu L, Fang J, Xia B, Wang Z, Lu K, Ma W, Wei Z (2016) Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat Commun 7:13740

    Article  Google Scholar 

  • Dennler G, Scharber MC, Brabec CJ (2009) Polymer–fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338

    Article  Google Scholar 

  • Feng L, Zichun Z, Cheng Z, Jianyun Z, Qin H, Thomas V, Feng L, Russell TP, Xiaozhang Z (2017) Efficient semitransparent solar cells with high nir responsiveness enabled by a small-bandgap electron acceptor. Adv Mater 29(21):1606574

    Google Scholar 

  • Feng S, Zhang C, Liu Y, Bi Z, Zhang Z, Xu X, Ma W, Bo Z (2017) Fused‐ring acceptors with asymmetric side chains for high‐performance thick‐film organic solar cells. Adv Mater 29(42):1703527

    Article  Google Scholar 

  • Feng H, Qiu N, Wang X, Wang Y, Kan B, Wan X, Zhang M, Xia A, Li C, Liu F, Zhang H, Chen Y (2017c) An A-D-A Type small-molecule electron acceptor with end-extended conjugation for high performance organic solar cells. Chem Mater 29(18):7908–7917

    Article  Google Scholar 

  • Fernandez-Lazaro F, Zink-Lorre N, Sastre-Santos A (2016) Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs). J Mater Chem A 4(24):9336–9346

    Article  Google Scholar 

  • Fuwen Z, Shuixing D, Yang W, Qianqian Z, Jiayu W, Li J, Qidan L, Zhixiang W, Wei M, Wei Y, Chunru W, Xiaowei Z (2017) Single-junction binary-blend nonfullerene polymer solar cells with 12.1% efficiency. Adv Mater 29(18):1700144

    Google Scholar 

  • Gao L, Zhang Z-G, Bin H, Xue L, Yang Y, Wang C, Liu F, Russell TP, Li Y (2016) High-efficiency nonfullerene polymer solar cells with medium bandgap polymer donor and narrow bandgap organic semiconductor acceptor. Adv Mater 28(37):8288–8295

    Article  Google Scholar 

  • Gasparini N, Salvador M, Strohm S, Heumueller T, Levchuk I, Wadsworth A, Bannock JH, de Mello JC, Egelhaaf H-J, Baran D, McCulloch I, Brabec CJ (2017) Burn-in free nonfullerene-based organic solar cells. Adv Energy Mater 7(19):1700770

    Article  Google Scholar 

  • Hartnett PE, Timalsina A, Matte HSSR, Zhou N, Guo X, Zhao W, Facchetti A, Chang RPH, Hersam MC, Wasielewski MR, Marks TJ (2014) Slip-stacked perylenediimides as an alternative strategy for high efficiency nonfullerene acceptors in organic photovoltaics. J Am Chem Soc 136(46):16345–16356

    Article  Google Scholar 

  • Holliday S, Ashraf RS, Wadsworth A, Baran D, Yousaf SA, Nielsen CB, Tan C-H, Dimitrov SD, Shang Z, Gasparini N, Alamoudi M, Laquai F, Brabec CJ, Salleo A, Durrant JR, McCulloch I (2016) High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat Commun 7:11585

    Article  Google Scholar 

  • Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J (2018) Ternary nonfullerene polymer solar cells with a power conversion efficiency of 11.6% by inheriting the advantages of binary cells. ACS Energy Lett 555–561

    Article  Google Scholar 

  • Huang W, Cheng P, Yang Y, Li G, Yang Y (2018) High-performance organic bulk-heterojunction solar cells based on multiple-donor or multiple-acceptor components. Adv Mater 30(8):1705706

    Article  Google Scholar 

  • Huanran F, Yuan-Qiu-Qiang Y, Xin K, Yamin Z, Xiangjian W, Chenxi L, Yongsheng C (2018) Synergistic modifications of side chains and end groups in small molecular acceptors for high efficient non-fullerene organic solar cells. Solar RRL 1800053 (2018)

    Google Scholar 

  • Huo L, Zhang S, Guo X, Xu F, Li Y, Hou J (2011) Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed 50(41):9697–9702

    Article  Google Scholar 

  • Huo Y, Yan C, Kan B, Liu X-F, Chen L-C, Hu C-X, Lau T-K, Lu X, Sun C-L, Shao X, Chen Y, Zhan X, Zhang H-L (2018) Medium-bandgap small-molecule donors compatible with both fullerene and nonfullerene acceptors. ACS Appl Mater Interfaces 10(11):9587–9594

    Article  Google Scholar 

  • Jia B, Wu Y, Zhao F, Yan C, Zhu S, Cheng P, Mai J, Lau T-K, Lu X, Su C-J, Wang C, Zhan X (2017) Rhodanine flanked indacenodithiophene as non-fullerene acceptor for efficient polymer solar cells. Sci China Chem 60(2):257–263

    Article  Google Scholar 

  • Jiang W, Ye L, Li X, Xiao C, Tan F, Zhao W, Hou J, Wang Z (2014) Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chem Commun 50(8):1024–1026

    Article  Google Scholar 

  • Jiang K, Zhang G, Yang G, Zhang J, Li Z, Ma T, Hu H, Ma W, Ade H, Yan H (2018) Multiple cases of efficient nonfullerene ternary organic solar cells enabled by an effective morphology control method. Adv Energy Mater 8(9):1701370

    Article  Google Scholar 

  • Kan B, Li M, Zhang Q, Liu F, Wan X, Wang Y, Ni W, Long G, Yang X, Feng H, Zuo Y, Zhang M, Huang F, Cao Y, Russell TP, Chen Y (2015) A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J Am Chem Soc 137(11):3886–3893

    Article  Google Scholar 

  • Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y (2017a) Small-molecule acceptor based on the heptacyclic benzodi(cyclopentadithiophene) unit for highly efficient nonfullerene organic solar cells. J Am Chem Soc 139(13):4929–4934

    Article  Google Scholar 

  • Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. (2017b) Fine-tuning the energy levels of a nonfullerene small-molecule acceptor to achieve a high short-circuit current and a power conversion efficiency over 12% in organic solar cells. Adv Mater 1704904

    Google Scholar 

  • Kan B, Yi Y-Q-Q, Wan X, Feng H, Ke X, Wang Y, Li C, Chen Y (2018) Ternary organic solar cells with 12.8% efficiency using two nonfullerene acceptors with complementary absorptions. Adv Energy Mater 1800424

    Google Scholar 

  • Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K (2016) Bulk-heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater 28(36):7821–7861

    Article  Google Scholar 

  • Kawashima K, Fukuhara T, Suda Y, Suzuki Y, Koganezawa T, Yoshida H, Ohkita H, Osaka I, Takimiya K (2016) Implication of fluorine atom on electronic properties, ordering structures, and photovoltaic performance in naphthobisthiadiazole-based semiconducting polymers. J Am Chem Soc 138(32):10265–10275

    Article  Google Scholar 

  • Ke X, Kan B, Wan X, Wang Y, Zhang Y, Li C, Chen Y (2018) Substituents on the end group subtle tuning the energy levels and absorptions of small-molecule nonfullerene acceptors. Dyes Pigm 155:241–248

    Article  Google Scholar 

  • Li Y (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45(5):723–733

    Article  Google Scholar 

  • Li C, Wonneberger H (2012) Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv Mater 24(5):613–636

    Article  Google Scholar 

  • Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ (2013) Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc 135(15):5529–5532

    Article  Google Scholar 

  • Li S, Liu W, Li C-Z, Liu F, Zhang Y, Shi M, Chen H, Russell TP (2016a) A simple perylene diimide derivative with a highly twisted geometry as an electron acceptor for efficient organic solar cells. J Mater Chem A 4(27):10659–10665

    Article  Google Scholar 

  • Li Z, Jiang K, Yang G, Lai JYL, Ma T, Zhao J, Ma W, Yan H (2016b) Donor polymer design enables efficient non-fullerene organic solar cells. Nat Commun 7:13094. https://13010.11038/ncomms13094

    Article  Google Scholar 

  • Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J (2016c) Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv Mater 28(42):9423–9429

    Article  Google Scholar 

  • Li Y, Liu X, Wu F-P, Zhou Y, Jiang Z-Q, Song B, Xia Y, Zhang Z-G, Gao F, Inganäs O, Li Y, Liao L-S (2016d) Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. J Mater Chem A 4(16):5890–5897

    Article  Google Scholar 

  • Li Y, Qian D, Zhong L, Lin J-D, Jiang Z-Q, Zhang Z-G, Zhang Z, Li Y, Liao L-S, Zhang F (2016e) A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy 27:430–438

    Article  Google Scholar 

  • Li Y, Zhong L, Wu F-P, Yuan Y, Bin H-J, Jiang Z-Q, Zhang Z, Zhang Z-G, Li Y, Liao L-S (2016f) Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy Environ Sci 9(11):3429–3435

    Article  Google Scholar 

  • Li Y, Gu M, Pan Z, Zhang B, Yang X, Gu J, Chen Y (2017a) Indacenodithiophene: a promising building block for high performance polymer solar cells. J Mater Chem A 5(22):10798–10814

    Article  Google Scholar 

  • Li Y, Lin J-D, Che X, Qu Y, Liu F, Liao L-S, Forrest SR (2017b) High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells. J Am Chem Soc 139(47):17114–17119

    Article  Google Scholar 

  • Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J (2018a) A wide band-gap polymer with a deep homo level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167

    Google Scholar 

  • Li T, Dai S, Ke Z, Yang L, Wang J, Yan C, Ma W, Zhan X (2018b) Fused tris(thienothiophene)-based electron acceptor with strong near-infrared absorption for high-performance as-cast solar cells. Adv Mater 30(10):1705969

    Article  Google Scholar 

  • Li H, Fang J, Zhang J, Zhou R, Wu Q, Deng D, Adil MA, Lu K, Guo X, Wei Z (2018c) A novel small molecule based on naphtho[1,2-b:5,6-b′]dithiophene benefits both fullerene and non-fullerene solar cells. Mater Chem Front 2:143–148

    Article  Google Scholar 

  • Liang Z, Li M, Zhang X, Wang Q, Jiang Y, Tian H, Geng Y (2018) Near-infrared absorbing non-fullerene acceptors with selenophene as π-bridges for efficient organic solar cells. J Mater Chem A 6(17):8059–8067

    Article  Google Scholar 

  • Lin Y, Zhan X (2016) Oligomer molecules for efficient organic photovoltaics. Acc Chem Res 49(2):175–183

    Article  Google Scholar 

  • Lin Y, Zhang Z-G, Bai H, Wang J, Yao Y, Li Y, Zhu D, Zhan X (2015a) High-performance fullerene-free polymer solar cells with 6.31% efficiency. Energy Environ Sci 8:610–616

    Article  Google Scholar 

  • Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H (2015b) High-performance non-fullerene polymer solar cells based on a pair of donor–acceptor materials with complementary absorption properties. Adv Mater 27(45):7299–7304

    Article  Google Scholar 

  • Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015c) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27(7):1170–1174

    Article  Google Scholar 

  • Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su C-J, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X (2016a) A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J Am Chem Soc 138(9):2973–2976

    Article  Google Scholar 

  • Lin Y, Li T, Zhao F, Han L, Wang Z, Wu Y, He Q, Wang J, Huo L, Sun Y, Wang C, Ma W, Zhan X (2016b) Structure evolution of oligomer fused-ring electron acceptors toward high efficiency of as-cast polymer solar cells. Adv Energy Mater 1600854

    Google Scholar 

  • Lin Y, Zhao F, He Q, Huo L, Wu Y, Parker TC, Ma W, Sun Y, Wang C, Zhu D, Heeger AJ, Marder SR, Zhan X (2016c) High-performance electron acceptor with thienyl side chains for organic photovoltaics. J Am Chem Soc 138(14):4955–4961

    Article  Google Scholar 

  • Lin Y, Wang J, Li T, Wu Y, Wang C, Han L, Yao Y, Ma W, Zhan X (2016d) Efficient fullerene-free organic solar cells based on fused-ring oligomer molecules. J Mater Chem A 4(4):1486–1494

    Article  Google Scholar 

  • Lin Y, Zhao F, Prasad SKK, Chen J-D, Cai W, Zhang Q, Chen K, Wu Y, Ma W, Gao F, Tang J-X, Wang C, You W, Hodgkiss JM, Zhan X (2018) Balanced partnership between donor and acceptor components in nonfullerene organic solar cells with >12% efficiency. Adv Mater 1706363

    Google Scholar 

  • Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H (2014) Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun 5:5293

    Article  Google Scholar 

  • Liu Y, Mu C, Jiang K, Zhao J, Li Y, Zhang L, Li Z, Lai JYL, Hu H, Ma T, Hu R, Yu D, Huang X, Tang BZ, Yan H (2015) A tetraphenylethylene core-based 3d structure small molecular acceptor enabling efficient non-fullerene organic solar cells. Adv Mater 27(6):1015–1020

    Article  Google Scholar 

  • Liu Z, Wu Y, Zhang Q, Gao X (2016a) Non-fullerene small molecule acceptors based on perylene diimides. J Mater Chem A 4(45):17604–17622

    Article  Google Scholar 

  • Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H (2016b) Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy 1:16089

    Article  Google Scholar 

  • Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X (2016c) A thieno[3,4-b]thiophene-based non-fullerene electron acceptor for high-performance bulk-heterojunction organic solar cells. J Am Chem Soc 138(48):15523–15526

    Article  Google Scholar 

  • Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y (2016d) Ternary organic solar cells based on two compatible nonfullerene acceptors with power conversion efficiency >10%. Adv Mater 28(45):10008

    Article  Google Scholar 

  • Liu Y, Zhang Z, Feng S, Li M, Wu L, Hou R, Xu X, Chen X, Bo Z (2017) Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J Am Chem Soc 139(9):3356–3359

    Article  Google Scholar 

  • Liu X, Xie B, Duan C, Wang Z, Fan B, Zhang K, Lin B, Colberts FJM, Ma W, Janssen RAJ, Huang F, Cao Y (2018) A high dielectric constant non-fullerene acceptor for efficient bulk-heterojunction organic solar cells. J Mater Chem A 6(2):395–403

    Article  Google Scholar 

  • Lu H, Zhang J, Chen J, Liu Q, Gong X, Feng S, Xu X, Ma W, Bo Z (2016) Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv Mater 28(43):9559–9566

    Article  Google Scholar 

  • Ma Y, Zhang M, Yan Y, Xin J, Wang T, Ma W, Tang C, Zheng Q (2017a) Ladder-type dithienonaphthalene-based small-molecule acceptors for efficient nonfullerene organic solar cells. Chem Mater 29(18):7942–7952

    Article  Google Scholar 

  • Ma Y, Zhang M, Tang Y, Ma W, Zheng Q (2017b) Angular-shaped dithienonaphthalene-based nonfullerene acceptor for high-performance polymer solar cells with large open-circuit voltages and minimal energy losses. Chem Mater 29(22):9775–9785

    Article  Google Scholar 

  • Meng D, Sun D, Zhong C, Liu T, Fan B, Huo L, Li Y, Jiang W, Choi H, Kim T, Kim JY, Sun Y, Wang Z, Heeger AJ (2016) High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J Am Chem Soc 138(1):375–380

    Article  Google Scholar 

  • Mishra A, Bäuerle P (2012) Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew Chem Int Ed 51(9):2020–2067

    Article  Google Scholar 

  • Mishra A, Popovic D, Vogt A, Kast H, Leitner T, Walzer K, Pfeiffer M, Mena-Osteritz E, Bäuerle P (2014) A-D–A-type S, N-heteropentacenes: next-generation molecular donor materials for efficient vacuum-processed organic solar cells. Adv Mater 26(42):7217–7223

    Article  Google Scholar 

  • Niu S, Liu Z, Wang N (2018) Effect of dihydronaphthyl-based C60 bisadduct as third component materials on the photovoltaic performance and charge carrier recombination of binary PBDB-T:ITIC polymer solar cells. Nanoscale 10(18):8483–8495

    Article  Google Scholar 

  • Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J (2016) Highly efficient fullerene-free polymer solar cells fabricated with polythiophene derivative. Adv Mater 28(42):9416–9422

    Article  Google Scholar 

  • Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y (2017a) A new nonfullerene electron acceptor with a ladder type backbone for high-performance organic solar cells. Adv Mater 29(6):1604964

    Article  Google Scholar 

  • Qiu B, Xue L, Yang Y, Bin H, Zhang Y, Zhang C, Xiao M, Park K, Morrison W, Zhang Z-G, Li Y (2017b) All-small-molecule nonfullerene organic solar cells with high fill factor and high efficiency over 10%. Chem Mater 29(17):7543–7553

    Article  Google Scholar 

  • Rajaram S, Shivanna R, Kandappa SK, Narayan KS (2012) Nonplanar perylene diimides as potential alternatives to fullerenes in organic solar cells. J Phys Chem Lett 3(17):2405–2408

    Article  Google Scholar 

  • Reichenbächer K, Süss HI, Hulliger J (2005) Fluorine in crystal engineering—“the little atom that could”. Chem Soc Rev 34:22–30

    Article  Google Scholar 

  • Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18(6):789–794

    Article  Google Scholar 

  • Schulz G, Lobert M, Ata I, Urdanpilleta M, Lindén M, Mishra A, Bäuerle P (2015) Functional tuning of A-D-A oligothiophenes: the effect of solvent vapor annealing on blend morphology and solar cell performance. J Mater Chem A 3:13738–13748

    Article  Google Scholar 

  • Sista S, Hong Z, Chen L-M, Yang Y (2011) Tandem polymer photovoltaic cells-current status, challenges and future outlook. Energy Environ Sci 4:1606–1620

    Article  Google Scholar 

  • Song X, Gasparini N, Ye L, Yao H, Hou J, Ade H, Baran D (2018) Controlling blend morphology for ultrahigh current density in nonfullerene acceptor-based organic solar cells. ACS Energy Lett 669–676

    Article  Google Scholar 

  • Su W, Fan Q, Guo X, Meng X, Bi Z, Ma W, Zhang M, Li Y (2017) Two compatible nonfullerene acceptors with similar structures as alloy for efficient ternary polymer solar cells. Nano Energy 38:510–517

    Article  Google Scholar 

  • Sun D, Meng D, Cai Y, Fan B, Li Y, Jiang W, Huo L, Sun Y, Wang Z (2015) Non-fullerene-acceptor-based bulk-heterojunction organic solar cells with efficiency over 7%. J Am Chem Soc 137(34):11156–11162

    Article  Google Scholar 

  • Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W (2018) Dithieno[3,2-b:2′,3′-d]pyrrol fused nonfullerene acceptors enabling over 13% efficiency for organic solar cells. Adv Mater 1707150

    Google Scholar 

  • Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I (2018) Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem Soc Rev. https://doi.org/10.1039/c1037cs00892a

  • Wang H, Chao P, Chen H, Mu Z, Chen W, He F (2017) Simultaneous increase in open-circuit voltage and efficiency of fullerene-free solar cells through chlorinated thieno[3,4-b]thiophene polymer donor. ACS Energy Lett 1971–1977

    Google Scholar 

  • Wang W, Yan C, Lau T-K, Wang J, Liu K, Fan Y, Lu X, Zhan X (2017) Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency. Adv Mater 29(31):1701308

    Article  Google Scholar 

  • Wang Y, Zhang Y, Qiu N, Feng H, Gao H, Kan B, Ma Y, Li C, Wan X, Chen Y (2018a) A halogenation strategy for over 12% efficiency nonfullerene organic solar cells. Adv Energy Mater 8(15):1702870

    Article  Google Scholar 

  • Wang Y, Chang M, Kan B, Wan X, Li C, Chen Y (2018b) All-small-molecule organic solar cells based on pentathiophene donor and alkylated indacenodithiophene-based acceptors with efficiency over 8%. ACS Appl Energy Mater 1(5):2150–2156

    Article  Google Scholar 

  • Wen S, Wu Y, Wang Y, Li Y, Liu L, Jiang H, Liu Z, Yang R (2018) Pyran-bridged indacenodithiophene as a building block for constructing efficient A–D–A-type nonfullerene acceptors for polymer solar cells. Chemsuschem 11(2):360–366

    Article  Google Scholar 

  • Wu J-S, Cheng S-W, Cheng Y-J, Hsu C-S (2014) Donor-acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem Soc Rev 44:1113–1154

    Article  Google Scholar 

  • Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X (2015) A planar electron acceptor for efficient polymer solar cells. Energy Environ Sci 8(11):3215–3221

    Article  Google Scholar 

  • Wu Q, Zhao D, Schneider AM, Chen W, Yu L (2016) Covalently bound clusters of alpha-substituted pdi—rival electron acceptors to fullerene for organic solar cells. J Am Chem Soc 138(23):7248–7251

    Article  Google Scholar 

  • Wu H, Fan H, Xu S, Zhang C, Chen S, Yang C, Chen D, Liu F, Zhu X (2017) A designed ladder-type heteroarene benzodi(thienopyran) for high-performance fullerene-free organic solar cells. Solar RRL 1(12):1700165

    Article  Google Scholar 

  • Xia D, Wu Y, Wang Q, Zhang A, Li C, Lin Y, Colberts FJM, van Franeker JJ, Janssen RAJ, Zhan X, Hu W, Tang Z, Ma W, Li W (2016) Effect of alkyl side chains of conjugated polymer donors on the device performance of non-fullerene solar cells. Macromolecules 49(17):6445–6454

    Article  Google Scholar 

  • Xiao Z, Jia X, Ding L (2017a) Ternary organic solar cells offer 14% power conversion efficiency. Sci Bull 62(23):1562–1564

    Article  Google Scholar 

  • Xiao Z, Liu F, Geng X, Zhang J, Wang S, Xie Y, Li Z, Yang H, Yuan Y, Ding L (2017b) A carbon-oxygen-bridged ladder-type building block for efficient donor and acceptor materials used in organic solar cells. Sci Bull 62(19):1331–1336

    Article  Google Scholar 

  • Xiao Z, Jia X, Li D, Wang S, Geng X, Liu F, Chen J, Yang S, Russell TP, Ding L (2017c) 26 mA cm−2 JSC from organic solar cells with a low-bandgap nonfullerene acceptor. Sci Bull 62(22):1494–1496

    Article  Google Scholar 

  • Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C (2017) A novel thiophene-fused ending group enabling an excellent small molecule acceptor for high-performance fullerene-free polymer solar cells with 11.8% efficiency. Solar RRL 1(6):1700044

    Article  Google Scholar 

  • Xu W, Gao F (2018) The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells. Mater Horiz 5(2):206–221

    Article  Google Scholar 

  • Xu Y-X, Chueh C-C, Yip H-L, Ding F-Z, Li Y-X, Li C-Z, Li X, Chen W-C, Jen AKY (2012) Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv Mater 24(47):6356–6361

    Article  Google Scholar 

  • Xu H, Yang Y, Zhong C, Zhan X, Chen X (2018a) Narrow bandgap non-fullerene acceptor based on a thiophene-fused benzothiadiazole unit with a high short-circuit current density of over 20 mA cm-2. J Mater Chem A 6(15):6393–6401

    Article  Google Scholar 

  • Xu X, Yu T, Bi Z, Ma W, Li Y, Peng Q (2018b) Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv Mater 30(3):1703973

    Article  Google Scholar 

  • Yang L, Yan L, You W (2013) Organic solar cells beyond one pair of donor–acceptor: ternary blends and more. J Phys Chem Lett 4(11):1802–1810

    Article  Google Scholar 

  • Yang Y, Zhang Z-G, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y (2016) Side-chain isomerization on an n-type organic semiconductor itic acceptor makes 11.77% high efficiency polymer solar cells. J Am Chem Soc 138(45):15011–15018

    Article  Google Scholar 

  • Yang F, Li C, Lai W, Zhang A, Huang H, Li W (2017a) Halogenated conjugated molecules for ambipolar field-effect transistors and non-fullerene organic solar cells. Mater Chem Front 1(7):1389–1395

    Article  Google Scholar 

  • Yang L, Zhang S, He C, Zhang J, Yao H, Yang Y, Zhang Y, Zhao W, Hou J (2017b) New wide band gap donor for efficient fullerene-free all-small-molecule organic solar cells. J Am Chem Soc 139(5):1958–1966

    Article  Google Scholar 

  • Yang L, Li M, Song J, Zhou Y, Bo Z, Wang H (2018a) Molecular consideration for small molecular acceptors based on ladder-type dipyran: influences of O-functionalization and π-bridges. Adv Funct Mater 28(8):1705927

    Article  Google Scholar 

  • Yang L, Zhang S, He C, Zhang J, Yang Y, Zhu J, Cui Y, Zhao W, Zhang H, Zhang Y, Wei Z, Hou J (2018b) Modulating molecular orientation enables efficient nonfullerene small-molecule organic solar cells. Chem Mater 30(6):2129–2134

    Article  Google Scholar 

  • Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J (2016a) Molecular design of benzodithiophene-based organic photovoltaic materials. Chem Rev 116(12):7397–7457

    Article  Google Scholar 

  • Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J (2016b) Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells. Adv Mater 28(37):8283–8287

    Article  Google Scholar 

  • Yao H, Yu R, Shin TJ, Zhang H, Zhang S, Jang B, Uddin MA, Woo HY, Hou J (2016c) A wide bandgap polymer with strong π–π interaction for efficient fullerene-free polymer solar cells. Adv Energy Mater 6(15):1600742

    Article  Google Scholar 

  • Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J (2017a) Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew Chem Int Ed 56:3045–3049

    Article  Google Scholar 

  • Yao H, Ye L, Hou J, Jang B, Han G, Cui Y, Su GM, Wang C, Gao B, Yu R, Zhang H, Yi Y, Woo HY, Ade H, Hou J (2017b) Achieving highly efficient nonfullerene organic solar cells with improved intermolecular interaction and open-circuit voltage. Adv Mater 1700254

    Google Scholar 

  • Ye P, Chen Y, Wu J, Wu X, Yu S, Xing W, Liu Q, Jia X, Peng A, Huang H (2017) Wide bandgap small molecular acceptors for low energy loss organic solar cells. J Mater Chem C 5(47):12591–12596

    Article  Google Scholar 

  • Yi J, Wang Y, Luo Q, Lin Y, Tan H, Wang H, Ma C-Q (2016) A 9,9′-Spirobi[9H-fluorene]-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. Chem Commun 52(8):1649–1652

    Article  Google Scholar 

  • Yi Y-Q-Q, Feng H, Chang M, Zhang H, Wan X, Li C, Chen Y (2017) New small-molecule acceptors based on hexacyclic naphthalene(cyclopentadithiophene) for efficient non-fullerene organic solar cells. J Mater Chem A 5(33):17204–17210

    Article  Google Scholar 

  • Yip H-L, Jen AKY (2012) Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells. Energy Environ Sci 5:5994–6011

    Article  Google Scholar 

  • Yu S, Chen Y, Yang L, Ye P, Wu J, Yu J, Zhang S, Gao Y, Huang H (2017a) Significant enhancement of photovoltaic performance through introducing S•••N conformational locks. J Mater Chem A 5(41):21674–21678

    Article  Google Scholar 

  • Yu R, Zhang S, Yao H, Guo B, Li S, Zhang H, Zhang M, Hou J (2017b) Two well-miscible acceptors work as one for efficient fullerene-free organic solar cells. Adv Mater 29:1700437

    Article  Google Scholar 

  • Yu R, Yao H, Hou J (2018) Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv Energy Mater 1702814

    Google Scholar 

  • Zang Y, Li C-Z, Chueh C-C, Williams ST, Jiang W, Wang Z-H, Yu J-S, Jen AKY (2014) Integrated molecular, interfacial, and device engineering towards high-performance non-fullerene based organic solar cells. Adv Mater 26(32):5708–5714

    Article  Google Scholar 

  • Zhang M, Guo X, Zhang S, Hou J (2013) Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater 26(7):1118–1123

    Article  Google Scholar 

  • Zhang S, Qin Y, Uddin MA, Jang B, Zhao W, Liu D, Woo HY, Hou J (2016) A fluorinated polythiophene derivative with stabilized backbone conformation for highly efficient fullerene and non-fullerene polymer solar cells. Macromolecules 49(8):2993–3000

    Article  Google Scholar 

  • Zhang G, Zhang K, Yin Q, Jiang X-F, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y (2017a) High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J Am Chem Soc 139(6):2387–2395

    Article  Google Scholar 

  • Zhang L, Lin B, Ke Z, Chen J, Li W, Zhang M, Ma W (2017b) A universal approach to improve electron mobility without significant enlarging phase separation in IDT-based non-fullerene acceptor organic solar cells. Nano Energy 41:609–617

    Article  Google Scholar 

  • Zhang Z, Feng L, Xu S, Yuan J, Zhang Z-G, Peng H, Li Y, Zou Y (2017c) Achieving over 10% efficiency in a new acceptor ITTC and its blends with hexafluoroquinoxaline based polymers. J Mater Chem A 5:11286–11293

    Article  Google Scholar 

  • Zhang Z-G, Li Y, Zhong L, Gautam B, Bin H, Lin J-D, Wu F-P, Zhang Z, Gundogdu K, Li Y, Jiang Z-Q, Liao LS (2017d) A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy Environ Sci 10(7):1610–1620

    Article  Google Scholar 

  • Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J (2018a) Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv Mater 1800613

    Google Scholar 

  • Zhang S, Qin Y, Zhu J, Hou J (2018b) Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv Mater 30(20):1800868

    Article  Google Scholar 

  • Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H (2018c) Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev 118(7):3447–3507

    Article  Google Scholar 

  • Zhang C, Feng S, Liu Y, Ming S, Lu H, Ma D, Xu X, Wu Y, Bo Z (2018d) High efficiency ternary polymer solar cells based on a fused pentacyclic electron acceptor. J Mater Chem A 6(16):6854–6859

    Article  Google Scholar 

  • Zhang Y, Kan B, Sun Y, Wang Y, Xia R, Ke X, Yi Y-Q-Q, Li C, Yip H-L, Wan X, Cao Y, Chen Y (2018e) Nonfullerene tandem organic solar cells with high performance of 14.11%. Adv Mater 1707508

    Google Scholar 

  • Zhang J, Yan C, Wang W, Xiao Y, Lu X, Barlow S, Parker TC, Zhan X, Marder SR (2018f) Panchromatic ternary photovoltaic cells using a nonfullerene acceptor synthesized using C-H functionalization. Chem Mater 30(2):309–313

    Article  Google Scholar 

  • Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H (2016a) Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy 1:15027

    Article  Google Scholar 

  • Zhao K, Wang Q, Xu B, Zhao W, Liu X, Yang B, Sun M, Hou J (2016b) Efficient fullerene-based and fullerene-free polymer solar cells using two wide band gap thiophene-thiazolothiazole-based photovoltaic materials. J Mater Chem A 4(24):9511–9518

    Article  Google Scholar 

  • Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J (2016c) Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv Mater 28(23):4734–4739

    Article  Google Scholar 

  • Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017a) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139(21):7148–7151

    Article  Google Scholar 

  • Zhao W, Li S, Zhang S, Liu X, Hou J (2017b) Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv Mater 29(2):1604059

    Article  Google Scholar 

  • Zhong Y, Trinh MT, Chen R, Wang W, Khlyabich PP, Kumar B, Xu Q, Nam C-Y, Sfeir MY, Black C, Steigerwald ML, Loo Y-L, Xiao S, Ng F, Zhu XY, Nuckolls C (2014) Efficient organic solar cells with helical perylene diimide electron acceptors. J Am Chem Soc 136(43):15215–15221

    Article  Google Scholar 

  • Zhong Y, Trinh MT, Chen R, Purdum GE, Khlyabich PP, Sezen M, Oh S, Zhu H, Fowler B, Zhang B, Wang W, Nam C-Y, Sfeir MY, Black CT, Steigerwald ML, Loo Y-L, Ng F, Zhu XY, Nuckolls C (2015) Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat Commun 6:8242

    Article  Google Scholar 

  • Zhong H, Wu C-H, Li C-Z, Carpenter J, Chueh C-C, Chen J-Y, Ade H, Jen AK-Y (2016) Rigidifying nonplanar perylene diimides by ring fusion toward geometry-tunable acceptors for high-performance fullerene-free solar cells. Adv Mater 28(5):951–958

    Article  Google Scholar 

  • Zhong W, Cui J, Fan B, Ying L, Wang Y, Wang X, Zhang G, Jiang X-F, Huang F, Cao Y (2017) Enhanced photovoltaic performance of ternary polymer solar cells by incorporation of a narrow-bandgap nonfullerene acceptor. Chem Mater 29(19):8177–8186

    Article  Google Scholar 

  • Zhu J, Ke Z, Zhang Q, Wang J, Dai S, Wu Y, Xu Y, Lin Y, Ma W, You W, Zhan X (2017) Naphthodithiophene-based nonfullerene acceptor for high-performance organic photovoltaics: effect of extended conjugation. Adv Mater 30(2):1704713

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Department of Science and Technology (DST), New Delhi (DST/TMD/SERI/D05) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amaresh Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, A., Sahu, S.N. (2019). Fullerene-Free Molecular Acceptors for Organic Photovoltaics. In: Tyagi, H., Agarwal, A., Chakraborty, P., Powar, S. (eds) Advances in Solar Energy Research. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3302-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3302-6_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3301-9

  • Online ISBN: 978-981-13-3302-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics