Skip to main content

Particulate Emission from Gasoline Direct Injection Engine

  • Chapter
  • First Online:
  • 879 Accesses

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

Gasoline direct injection (GDI) engines can reach considerably higher efficiencies than the port fuel-injected engine (PFI) due to the stratified charge technology. The higher volumetric efficiency as well as better charge cooling helps to increase the compression ratios of these engines, hence, increasing the overall brake efficiency. One of the drawbacks of this engine type, however, is the short premixing time prior to ignition. In particular, for these kinds of engines, the fuel is generally injected when the intake valve is open, or later, in order to increase airflow and volumetric efficiency as well as to reach a specific stratification level. Since the droplet does not have adequate time for complete evaporation at the time of ignition, a significantly larger portion of the charge burns in diffusion combustion, which increases the soot formation. Even during operation utilizing early injection, there is an occurrence of small fuel films on the combustion chamber walls, which are diffusively combusted during the cycle. GDI engines are generally considered an important source of both nucleation and accumulation mode particulate matter, consisting both of carbonaceous and metal oxide particles. To counteract this issue, both particle number (PN), as well as Particulate Matter (PM), are now regulated according to EU 6 standards. In this chapter, a general overview of soot formation in GDI engines is given. In particular, they will explain the general process of soot formation in engines, the main physical parameters that affect its formation and those that affect the particulate emissions in GDI engines, considering also the effect of the use of biofuels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barone TL, Storey JME, Youngquist AD, Szybist JP (2012) An analysis of direct-injection spark-ignition (DISI) soot morphology. Atmos Environ 49:268–274

    Article  Google Scholar 

  • Bartok W, Sarofim AF (1991) Fossil fuel combustion. Wiley, New York

    Google Scholar 

  • Böhm H, Hesse D, Jander H, Luers B et al (1989) The influence of pressure and temperature on soot formation in premixed flames. Symp Int Combust 22(1):403–411

    Article  Google Scholar 

  • Bölter J, Mach W (eds) (2007) Weniger Reibung und mehr Verschleiß: Dieselruß im Schmieröl

    Google Scholar 

  • Burke S, Ratcliff M, McCormick R, Rhoads R et al (2017) Distillation-based droplet modeling of non-ideal oxygenated gasoline blends: investigating the role of droplet evaporation on PM emissions. SAE Int J Fuels Lubr 10(1):69–81

    Article  Google Scholar 

  • Catapan F, Di Iori S, Lazzaro M, Sementa P et al (2013) Characterization of ethanol blends combustion processes and soot formation in a GDI optical engine. SAE technical paper 2013-01-1316

    Google Scholar 

  • Catapano F, Di Iorio S, Sementa P, Vaglieco BM (2015) Effects of the ethanol and gasoline blending and dual fueling on engine performance and emissions. SAE technical paper 2015-24-2490

    Google Scholar 

  • Chen L, Stone R (2011) Measurement of enthalpies of vaporization of isooctane and ethanol blends and their effects on PM emissions from a GDI engine. Energy Fuel 25:1254–1259

    Article  Google Scholar 

  • Chen L, Braisher M, Crossley A, Stone R et al (2010) The influence of ethanol blends on particulate matter emissions from gasoline direct injection engines. SAE technical paper 2010-01-0793

    Google Scholar 

  • Chen L, Stone R, Richardson D (2012) Effect of the valve timing and the coolant temperature on particulate emissions from a gasoline direct-injection engine fuelled with gasoline and with a gasoline/ethanol blend. J Automob Eng 226(10):1419–1430

    Article  Google Scholar 

  • Chen Y, Wang Y, Raine R (2017) Correlation between cycle-by-cycle variation, burning rate, and knock: a statistical study from PFI and DISI engines. Fuel 206:210–218

    Article  Google Scholar 

  • Cho J, Si W, Jang W, Jin D et al (2015) Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine. Appl Energy 160:592–602

    Article  Google Scholar 

  • De Francqueville L (2011) Effects of ethanol addition in RON 95 gasoline on GDI stratified combustion. SAE technical paper 2011-24-0055

    Google Scholar 

  • Di Iorio S, Lazzaro M, Sementa P, Vaglieco BM et al (2013) Particle size distributions from a DI high performance SI engine fuelled with gasoline-ethanol blended fuels. SAE technical paper 2013-01-1316

    Google Scholar 

  • Di Iorio S, Sementa P, Vaglieco B (2015) Experimental characterization of an ethanol DI-gasoline PFI and gasoline DI-gasoline PFI dual fuel small displacement SI engine. SAE technical paper 2015-01-0848

    Google Scholar 

  • Di Iorio S, Luise L, Sementa P, Vaglieco BM (2016) Experimental analysis of O2 addition on engine performance and exhaust emissions from a small displacement SI engine. SAE technical paper 2016-01-0697

    Google Scholar 

  • Di Iorio S, Luise L, Sementa P, Vaglieco BM (2017) In-cylinder soot formation and exhaust particle emissions in a small displacement spark ignition engine operating with ethanol mixed and dual fuelled with gasoline. SAE technical paper 2017-01-0653

    Google Scholar 

  • Drake MC, Fansler TD, Solomon AS, Szekel GA (2003) Piston fuel films as a source of smoke and hydrocarbon emissions from a wall-controlled spark-ignited direct-injection engine. SAE technical paper 2003-01-0547

    Google Scholar 

  • Eastwood P (2008) Particulate emissions from vehicles. Wiley, UK

    Google Scholar 

  • European Environment Agency (EEA) (2018) Greenhouse gas emissions from transport. https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of-greenhouse-gases/transport-emissions-of-greenhouse-gases-10. Accessed June 2018

  • Flower WL (1988) An investigation of soot formation in axisymmetric turbulent diffusion flames at elevated pressure. Symp Int Combust 22(1):425–435

    Article  Google Scholar 

  • Flower WL, Bowman CT (1988) Soot production in axisymmetric laminar diffusion flames at pressures from one to ten atmospheres. Symp Int Combust 21(1):1115–1124

    Article  Google Scholar 

  • Gautam M, Chitoor K, Durbha M, Summers JC (1999) Effect of diesel soot contaminated oil on engine wear-investigation of novel oil formulations. Tribol Int 32(12):687–699

    Article  Google Scholar 

  • Geng P, Zhang H, Yang S (2015) Experimental investigation on the combustion and particulate matter (PM) emissions from a port-fuel injection (PFI) gasoline engine fueled with methanol/ultralow sulfur gasoline blends. Fuel 145:221–227

    Article  Google Scholar 

  • Giechaskiel B, Wang X, Gilliland D, Drossinos Y (2011) The effect of particle chemical composition on the activation probability in n-butanol condensation particle counters. J Aerosol Sci 42(1):20–37

    Article  Google Scholar 

  • Glassman I (1988) Soot formation in combustion processes. In: Proceedings of the 22nd international symposium on combustion. The Combustion Institute, pp 295–311

    Google Scholar 

  • Glassman I, Yetter RA (1996) Combustion. Academic Press, San Diego

    Google Scholar 

  • Golea D, Rezgui Y, Guemini M, Hamdane S (2012) Reduction of PAH and soot precursors in Benzene Flames by addition of ethanol. J Phys Chem A 116(14):3625–3642

    Article  Google Scholar 

  • Guo M, Song W, Buhain J (2015) Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev 42:712–725

    Article  Google Scholar 

  • Haynes BS, Wagner HG (1981) Soot formation. Progr Energy Combust Sci 7(4):229–273

    Article  Google Scholar 

  • He X, Ratcliff MA, Zigler BT (2012) Effects of gasoline direct injection engine operating parameters on particle number emissions. Energy Fuel 26:2014–2027

    Article  Google Scholar 

  • Hedge M, Weber P, Gingrich J, Alger T et al (2011) Effect of EGR on particle emissions from a GDI engine. SAE Int J Eng 4(1):650–666

    Article  Google Scholar 

  • Heywood JB (1988) Internal combustion engine fundamentals, international edn. McGraw-Hill International Editions

    Google Scholar 

  • Hinds WC (2012) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley

    Google Scholar 

  • Huang Y, Hong G, Huang R (2015) Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine. Appl Energy 160:244–254

    Article  Google Scholar 

  • Hwang JY, Chung SH, Lee W (1998) Effects of oxygen and propane addition on soot formation in counterflow ethylene flames and the role of C3 chemistry. In: Twenty-seventh symposium (international) on combustion. The Combustion Institute, pp 1531–1538

    Google Scholar 

  • Jeuland N, Montagne X, Gautrot X (2006) Potentiality of ethanol as a fuel for dedicated engine. Oil Gas Sci Technol 59(6):559–570

    Article  Google Scholar 

  • Jiao Q, Reitz R (2015) The effect of operating parameters on soot emissions in GDI engines. SAE Int J Eng 8(3):1322–1333

    Google Scholar 

  • Johansson B, Andersson Ö, Tunestål P, Tuner M (2014) Combustion engines, vol 1, Media-Tryck Lund

    Google Scholar 

  • Johnson DB (1982) The role of giant and ultragiant aerosol particles in warm rain initiation. J Atmos Sci 39:448–460

    Article  Google Scholar 

  • Justman M, Gradstein M (1999) The industrial revolution, political transition, and the subsequent decline in inequality in 19th-century Britain. Explor Econ Hist 36(2):109–127

    Article  Google Scholar 

  • Karavalakis G, Short D, Vu D, Villela M et al (2014) Evaluating the regulated emissions, air toxics, ultrafine particles, and black carbon from SI-PFI and SI-DI vehicles operating on different ethanol and iso-butanol blends. Fuel 128:410–421

    Article  Google Scholar 

  • Kayes D, Hochgreb S (1999) Mechanism of particulate matter formation in spark-ignition engines. Environ Sci Technol 33(22):3968–3977

    Article  Google Scholar 

  • Khalek I, Kittelson D, Graskow B, Wei Q et al (1998) Diesel exhaust particle size: measurement issues and trends. SAE technical paper 980525

    Google Scholar 

  • Khalek I, Kittelson D, Brear F (1999) The influence of dilution conditions on diesel exhaust particle size distribution measurements. SAE technical paper 1999-01-1142

    Google Scholar 

  • Kidoguchi Y, Yang C, Miwa K (2000) Effects of fuel properties on combustion and emission characteristics of a direct-injection diesel engine. SAE technical paper 2000-01-1851

    Google Scholar 

  • Kim Y, Kim Y, Jun S, Lee K et al (2013) Strategies for particle emissions reduction from GDI engines. SAE technical paper 2013-01-1556

    Google Scholar 

  • Kittelson DB (1998) Engines and nanoparticles: a review. J Aerosol Sci 29(5–6):575–588

    Article  Google Scholar 

  • Kittelson D, Watts W, Johnson J, Thorne C et al (2008) Effect of fuel and lube oil sulfur on the performance of a diesel exhaust gas continuously regenerating trap. Environ Sci Technol 42(24):9276–9282

    Article  Google Scholar 

  • Leach F, Stone R, Richardson D, Lewis A et al (2017) Particulate emissions from a highly boosted GDI engine. Int J Engine Res 19(3):347–359

    Article  Google Scholar 

  • Lee J, Do H, Kweon S, Park K, Hong J (2010) Effect of various LPG supply systems on exhaust particle emission in spark-ignited combustion engine. Int J Automot Technol 11(6):793–800

    Article  Google Scholar 

  • Lee KO, Seong H, Sakai S, Hageman M et al (2013) Detailed morphological properties of nanoparticles from gasoline direct injection engine combustion of ethanol blends. SAE technical paper 2013-24-0185

    Google Scholar 

  • Liang B, Ge Y, Tan J, Han X et al (2013) Comparison of PM emissions from a gasoline direct injected (GDI) vehicle and a port fuel injected (PFI) vehicle measured by electrical low pressure impactor (ELPI) with two fuels: Gasoline and M15 methanol gasoline. J Aerosol Sci 57:22–31

    Article  Google Scholar 

  • Liati A, Schreiber D, Eggenschwiler PD, Dasilva YAR et al (2016) Electron microscopic characterization of soot particulate matter emitted by modern direct injection gasoline engines. Combust Flame 166:307–315

    Article  Google Scholar 

  • Luo Y, Fang J, Zhuang Z, Guan C et al (2015) Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel. Appl Therm Eng 89(5):647–655

    Article  Google Scholar 

  • Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aerosol Sci 38(11):1079–1118

    Article  Google Scholar 

  • Maricq MM, Szente JJ, Jahr K (2011) The impact of ethanol fuel blends on PM emissions from a light-duty GDI vehicle. Aerosol Sci Technol 46(5):576–583

    Article  Google Scholar 

  • McCreanor J, Cullinan P, Nieuwenhuijsen MJ, Stewart-Evans J et al (2007) Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 357:2348–2358

    Article  Google Scholar 

  • Merola SS, Sementa P, Tornatore C, Vaglieco BM (2010) Effect of the fuel injection strategy on the combustion process in a PFI boosted spark-ignition engine. Energy 35(2):1094–1100

    Article  Google Scholar 

  • Myung CL, Park S (2012) Exhaust nanoparticle emissions from internal combustion engines: a review. Int J Automot Technol 13(1):9–22

    Article  Google Scholar 

  • Myung C, Lee H, Choi K, Lee Y, Park S (2009) Effects of gasoline, diesel, LPG and low-carbon fuels and various certification modes on nanoparticle emission characteristics in light-duty vehicles. Int J Autom Technol 10(5):537–544

    Article  Google Scholar 

  • Oberdörster G, Sharp Z, Atudorei V, Elder A et al (2004) Translocation of inhaled ultrafine particles to the Brain. Inhalation Toxicol 46(6–7):437–445

    Article  Google Scholar 

  • Otsuki Y, Takeda K, Haruta K, Mori N (2014) A solid particle number measurement system including nanoparticles smaller than 23 nanometers. SAE technical paper 2014-01-1604

    Google Scholar 

  • Pei YQ, Qin J, Pan SZ (2014) Experimental study on the particulate matter emission characteristics for a direct-injection gasoline engine. J Automob Eng 228(6):604–616

    Article  Google Scholar 

  • Piock W, Hoffmann G, Berndorfer A, Salemi P et al (2011) Strategies towards meeting future particulate matter emission requirements in homogeneous gasoline direct injection engines. SAE Int J Eng 4:1455–1468

    Article  Google Scholar 

  • Price P, Twiney B, Stone R, Kar K et al (2007) Particulate and hydrocarbon emissions from a spray guided direct injection spark ignition engine with oxygenate fuel blends. SAE technical paper 2007-01-0472

    Google Scholar 

  • Qin J, Li X, Pei Y, Preger C et al (2014) Effects of combustion parameters and lubricating oil on particulate matter emissions from a turbo-charged GDI engine fueled with methanol/gasoline blends. SAE technical paper 2014-01-2841

    Google Scholar 

  • REGULATION (EC) No. 715 (2007)

    Google Scholar 

  • Ristovski ZD, Morawska L, Hitchins J, Thomas S et al (2000) Particle emissions from compressed natural gas engines. J Aerosol Sci 31(4):403–413

    Article  Google Scholar 

  • Sabathil D, Koenigstein A, Schaffner P, Fritzsche J et al (2011) The influence of DISI engine operating parameters on particle number emissions. SAE technical paper 2011-01-0143

    Google Scholar 

  • Sakurai H, Tobias H, Park K, Zarling D et al (2003) Online measurements of diesel nanoparticle composition and volatility. Atmos Environ 37(9–10):1199–1210

    Article  Google Scholar 

  • Sato H, Tree DR, Hodges JT, Foster DE (1990) A study on the effect of temperature on soot formation in a jet stirred reactor. In: Proceedings of the 23rd international symposium on combustion. The Combustion Institute, pp 1469–1475

    Google Scholar 

  • Seong H, Lee K, Choi S (2013) Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine. SAE technical paper 2013-01-2574

    Google Scholar 

  • Shamun S, Novakovic M, Malmborg VB, Preger C et al (2017) Detailed characterization of particulate matter in alcohol exhaust emissions. In: 9th international conference on modelling and diagnostics for advanced engine systems

    Google Scholar 

  • Sharma N, Agarwal AK (2017) Gasoline direct injection engines and particulate emissions. Air Pollut Control 87–105

    Google Scholar 

  • Smith OI (1981) Fundamentals of soot formation in flames with application to diesel engine particulate emissions. Prog Energy Combust Sci 7(4):275–291

    Article  Google Scholar 

  • Somers CM, McCarry BE, Malek F, Quinn JS (2004) Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science 304(5673):1008–1010

    Article  Google Scholar 

  • Stepien Z, Czerwinski J, Comte P, Oleksiak S (2016) Nanoparticle and non-legislated gaseous emissions from a gasoline direct-injection car with ethanol blend fuels and detergent additives. Energy Fuels 30:7268–7276

    Article  Google Scholar 

  • Stone R (1999) Introduction to internal combustion engines. Macmillan Press

    Google Scholar 

  • Storey J, Barone T, Norman K, Lewis S (2010) Ethanol blend effects on direct injection spark-ignition gasoline vehicle particulate matter emissions. SAE Int J Fuels Lubr 3(2):650–659

    Article  Google Scholar 

  • Su J, Xu M, Yin P, Gao Y et al (2014) Particle number emissions reduction using multiple injection strategies in a boosted spark-ignition direct-injection (SIDI) gasoline engine. SAE Int J Eng 8:20–29

    Article  Google Scholar 

  • Tree DR, Svensson KI (2011) Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments. J Geophys Res 116(D10):2156–2202

    Google Scholar 

  • Wang C, Xu H, Herreros JM, Wang J et al (2014) Impact of fuel and injection system on particle emissions from a GDI engine. Appl Energy 132:178–191

    Article  Google Scholar 

  • Wang X, Ge Y, Liu L, Peng Z et al (2015) Evaluation on toxic reduction and fuel economy of a gasoline direct injection-(GDI-) powered passenger car fueled with methanol-gasoline blends with various substitution ratios. Appl Energy 157:134–143

    Article  Google Scholar 

  • Whitaker P, Kapus P, Ogris M, Hollerer P (2011) Measures to reduce particulate emissions from gasoline DI engines. SAE Int J Eng 3:1498–1512

    Article  Google Scholar 

  • Williams SN, Schaefer SJ, Calvache ML, Lopez D (1992) Global carbon dioxide emissions to the atmosphere by volcanoes. Geochim Cosmochim Acta 56(4):1765–1770

    Article  Google Scholar 

  • Yao XH, Zhang L (2011) Sulfate formation in atmospheric ultrafine particles at Canadian inland and coastal rural environments. J Geophys Res 116(D10):2156–2202

    Article  Google Scholar 

  • Zachos JC, Dickens GR, Zeebe RZ (2008) An early cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279–293

    Article  Google Scholar 

  • Zhang Z, Wang T, Jia M, Wei Q et al (2014) Combustion and particle number emissions of a direct injection spark ignition engine operating on ethanol/gasoline and n-butanol/gasoline blends with exhaust gas recirculation. Fuel 130:177–188

    Article  Google Scholar 

  • Zhang R, Pham PX, Kook S, Masri AR (2016) Influence of carbon chain length on biodiesel combustion in an optically accessible diesel engine. In: 20th Australian fluid mechanics conference

    Google Scholar 

  • Zhao F, Lai MC, Harrington DL (1999) Automotive spark-ignition direct-injection gasoline engines. Progr Energy Combust Sci 25(5):437–562

    Article  Google Scholar 

  • Zhu R, Hu J, Bao X, He L, Zu L (2017) Effects of aromatics, olefins and distillation temperatures (T50&T90) on particle mass and number emissions from gasoline direct injection (GDI) vehicles. Energy Policy 101:185–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovica Luise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luise, L. (2019). Particulate Emission from Gasoline Direct Injection Engine. In: Agarwal, A., Dhar, A., Sharma, N., Shukla, P. (eds) Engine Exhaust Particulates. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3299-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3299-9_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3298-2

  • Online ISBN: 978-981-13-3299-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics