Advertisement

Wireless Sensing Systems: A Review

  • Sudarsana Jena
  • Ankur GuptaEmail author
  • Rohit Kumar Pippara
  • Pramod Pal
  • Adit
Chapter
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Wireless sensing is a state-of-the-art technology of acquiring information about a remote object and its characteristics without bringing into physical contact with it. Humans have various sensory systems, viz., vision, hear, and smell to observe the object from the remote in day-to-day life. The data from the surrounding can be acquired by means of acoustic waves, distribution of forces, and electromagnetic energy. The collected data can be analyzed to obtain useful information about the object and its characteristics. Swift progress in the microelectronics has resulted in faster response and accurate mode of signal detection. Keeping the technological progress in mind, this article discusses the fundamentals aspects and reviews the state of the artwork on wireless detection technology.

Keywords

Wireless sensing technology Radar systems RF communication RFID tag Bluetooth NFC 

References

  1. Abad E, Zampolli S, Marco S, Scorzoni A, Mazzolai B, Juarros A, Gómez D, Elmi I, Cardinali GC, Gómez JM, Palacio F (2007) Flexible tag microlab development: gas sensors integration in RFID flexible tags for food logistic. Sens Actuators B: Chem 127(1):2–7CrossRefGoogle Scholar
  2. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002) Wireless sensor networks: a survey. Comput Netw 38(4):393–422CrossRefGoogle Scholar
  3. Alabaster C (2012) Pulse doppler radar. The Institution of Engineering and TechnologyGoogle Scholar
  4. Asad M, Sheikhi MH (2016a) Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens Actuators B: Chem 231:474–483CrossRefGoogle Scholar
  5. Asad M, Sheikhi MH (2016b) Highly sensitive wireless H2S gas sensors at room temperature based on CuO-SWCNT hybrid nanomaterials. Sens Actuators B: Chem 1(231):474–483CrossRefGoogle Scholar
  6. Azzarelli JM, Mirica KA, Ravnsbæk JB, Swager TM (2014) Wireless gas detection with a smartphone viarf communication. Proc Natl Acad Sci 111(51):18162–18166CrossRefGoogle Scholar
  7. Barton DK, Cook CE, Hamilton PC (eds) (1991) Radar evaluation handbook. Artech House on DemandGoogle Scholar
  8. Bhoir S, Goregaonkar S, Satre S (2017) IoT based gas detection system. Int J Eng Sci 10251Google Scholar
  9. Blackman SS (1986) Multiple-target tracking with radar applications. Dedham, MA, Artech House, Inc., 463 ppGoogle Scholar
  10. Bor-Yaliniz RI, El-Keyi A, Yanikomeroglu H (2016) Efficient 3-D placement of an aerial base station in next generation cellular networks. In: 2016 IEEE international conference on communications (ICC), 22 May 2016. IEEE, pp 1–5Google Scholar
  11. Butler MA (1991) Fiber optic sensor for hydrogen concentrations near the explosive limit. J Electrochem Soc 138(9):L46–L47CrossRefGoogle Scholar
  12. Campbell JB, Wynne RH (2011) Introduction to remote sensing. Guilford PressGoogle Scholar
  13. Capone S, Forleo A, Francioso L, Rella R, Siciliano P, Spadavecchia J, Presicce DS, Taurino AM (2003) Solid state gas sensors: state of the art and future activities. J Optoelectron Adv Mater 5:1335–1348Google Scholar
  14. Chavali M, Lin TH, Wu RJ, Luk HN, Hung SL (2008) Active 433 MHz-W UHF RF-powered chip integrated with a nanocomposite m-MWCNT/polypyrrole sensor for wireless monitoring of volatile anesthetic agentsevoflurane. Sens Actuators A 141(1):109–119CrossRefGoogle Scholar
  15. Chen C, Tsow F, Campbell KD, Iglesias R, Forzani E, Tao N (2013) A wireless hybrid chemical sensor for detection of environmental volatile organic compounds. IEEE Sens J 13(5):1748–1755CrossRefGoogle Scholar
  16. Choi BI, Lee B, Song MK, inventors; NanoLambdaInc, assignee (2016) Nano-optic filter array based sensor. United States patent US 9,395,473, 19 Jul 2016Google Scholar
  17. Curlander JC, McDonough RN (1991) Synthetic aperture radar. Wiley, New York, NY, USAzbMATHGoogle Scholar
  18. Curry GR (2012) Radar essentials: a concise handbook for radar design and performance. The Institution of Engineering and TechnologyGoogle Scholar
  19. Dai J, Zhu L, Wang G, Xiang F, Qin Y, Wang M, Yang M (2017) Optical fiber grating hydrogen sensors: a review. Sensors 17(3):577CrossRefGoogle Scholar
  20. DeCuir J (2014) Introducing Bluetooth smart: Part 1: a look at both classic and new technologies. IEEE Consum Electron Mag 3(1):12–18CrossRefGoogle Scholar
  21. DeHennis A, Getzlaff S, Grice D, Mailand M (2016) An NFC-enabled CMOS IC for a wireless fully implantable glucose sensor. IEEE J Biomed Health Inform 20(1):18–28CrossRefGoogle Scholar
  22. Doni A, Murthy C, Kurian MZ (2018) Survey on multi sensor based air and water quality monitoring using IoT. Indian J Sci Res 17(2):147–153Google Scholar
  23. Edde B (1993) Radar-principles, technology, applications. NASA STI/Recon technical report A, 93Google Scholar
  24. Electrical apparatus for the detection of combustible gases in domestic premises. Test methods and performance requirements, EN 50194:2000 (2000)Google Scholar
  25. Farina A (1986) Studer FA. Radar data processing. Volume 2-Advanced topics and applications. NASA STI/Recon Technical Report A. 1986;86Google Scholar
  26. Ferrer-Vidal A, Rida A, Basat S, Yang L, Tentzeris MM (2006) Integration of sensors and RFID’s on ultra-low-cost paper-based substrates for wireless sensor networks applications. In: 2006 2nd IEEE workshop on wireless mesh networks, WiMesh 2006. IEEE, pp 126–128Google Scholar
  27. Formisano F, Massera E, De Vito S, Buonanno A, Di Francia G, Veneri PD (2015) Tinynose, an auxiliary smart gas sensor for RFID tag in vegetables ripening monitoring during refrigerated cargo transport. In: Sensors. Springer, Cham, pp 217–221Google Scholar
  28. Geisheimer JL, Marshall WS, Greneker E (2001) A continuous-wave (CW) radar for gait analysis. In: 2001 conference record of the thirty-fifth Asilomar conference on signals, systems and computers, 4 Nov 2001, vol 1. IEEE, pp 834–838Google Scholar
  29. Giust F, Cominardi L, Bernardos CJ (2015) Distributed mobility management for future 5G networks: overview and analysis of existing approaches. IEEE Commun Mag 53(1):142–149CrossRefGoogle Scholar
  30. Gupta A, Gangopadhyay S, Gangopadhyay K, Bhattacharya S (2016) Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing. Nanomater Nanotechnol 1(6):40CrossRefGoogle Scholar
  31. Gupta A, Jha RK (2015) A survey of 5G network: architecture and emerging technologies. IEEE Access 3:1206–1232CrossRefGoogle Scholar
  32. Gupta A, Pandey SS, Bhattacharya S (2013) High aspect ZnO nanostructures based hydrogen sensing. In: AIP conference proceedings, 3 Jun 2013, vol 1536, no 1, pp 291–292Google Scholar
  33. Gupta A, Pandey SS, Nayak M, Maity A, Majumder SB, Bhattacharya S (2014a) Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nano bundles. RSC Adv 4(15):7476–7482CrossRefGoogle Scholar
  34. Gupta A, Srivastava A, Mathai CJ, Gangopadhyay K, Gangopadhyay S, Bhattacharya S (2014b) Nano porous palladium sensor for sensitive and rapid detection of hydrogen. Sens Lett 12(8):1279–1285CrossRefGoogle Scholar
  35. Haghi M, Thurow K, Stoll R (2017) Wearable devices in medical internet of things: scientific research and commercially available devices. Healthc Inform Res 23(1):4–15CrossRefGoogle Scholar
  36. Hansen RC (2009) Phased array antennas. WileyGoogle Scholar
  37. Headrick JM, Skolnik MI (1974) Over-the-horizon radar in the HF band. Proc IEEE 62(6):664–673CrossRefGoogle Scholar
  38. Ho CK, Itamura MT, Kelley M, Hughes RC (2001) Review of chemical sensors for in-situ monitoring of volatile contaminants. Sandia ReportGoogle Scholar
  39. IEEE Standard Letter Designations for Radar Frequency Bands, IEEE Std 521-2002, The Institute of Electrical and Electronic Engineers, New York (2003)Google Scholar
  40. Jackson MC (1986) The geometry of bistatic radar systems. In: IEE proceedings F (communications, radar and signal processing), 1 Dec 1986, vol. 133, no 7. IET Digital Library, pp 604–612Google Scholar
  41. Jeffrey T (2009) Phased-array radar design: application of radar fundamentals. The Institution of Engineering and TechnologyGoogle Scholar
  42. Johnson DH (2006) Signal-to-noise ratio. Scholarpedia 1(12):2088CrossRefGoogle Scholar
  43. Karmaoui M, Leonardi SG, Tobaldi DM, Donato N, Pullar RC, Seabra MP, Labrincha JA, Neri G (2015) Novel nanosynthesis of In2O3 and its application as a resistive gas sensor for sevoflurane anesthetic. J Mater Chem B 3(3):399–407CrossRefGoogle Scholar
  44. Kim SY, Kim J, Cheong WH, Lee IJ, Lee H, Im HG, Kong H, Bae BS, Park JU (2017) Alcohol Gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens Actuators B: ChemGoogle Scholar
  45. Kim SY, Kim J, Cheong WH, Lee IJ, Lee H, Im HG, Kong H, Bae BS, Park JU (2018) Alcohol gas sensors capable of wireless detection using In2O3/Pt nanoparticles and Ag nanowires. Sens Actuators B: Chem 15(259):825–832CrossRefGoogle Scholar
  46. Krikorian KV, Rosen RA, inventors; Raytheon Co, assignee (2007) Technique for compensation of transmit leakage in radar receiver. United States patent US 7,202,812,. 10 Apr 2007Google Scholar
  47. Krishna KL, Madhuri J, Anuradha K (2016) A ZigBee based energy efficient environmental monitoring alerting and controlling system. In: 2016 international conference on information communication and embedded systems (ICICES). IEEE, pp 1–7Google Scholar
  48. Kurzekar R, Arora H, Shrestha R (2017) Embedded hardware prototype for gas detection and monitoring system in Android mobile platform. In: 2017 IEEE international symposium on nanoelectronic and information systems (iNIS). IEEE, pp 6–10Google Scholar
  49. Lee JS, Oh J, Jun J, Jang J (2015) Wireless hydrogen smart sensor based on Pt/graphene-immobilized radio-frequency identification tag. ACS Nano 9(8):7783–7790CrossRefGoogle Scholar
  50. Li Z, Yang MH, Dai JX, Wang GP, Huang CJ, Tang JG, Hu WB, Song H, Huang PC (2015a) Optical fiber hydrogen sensor based on evaporated Pt/WO3 film. Sens Actuators B: Chem 206:564–569CrossRefGoogle Scholar
  51. Li Z, Yang MH, Dai JX, Wang GP, Huang CJ, Tang JG, Hu WB, Song H, Huang PC (2015b) Optical fiber hydrogen sensor based on evaporated Pt/WO3 film. Sens Actuators B: Chem 206:564–569CrossRefGoogle Scholar
  52. Liu Y, Chen YP, Song H, Zhang G (2012a) Modeling analysis and experimental study on the optical fiber hydrogen sensor based on Pd-Y alloy thin film. Rev Sci Instrum 83(7):075001CrossRefGoogle Scholar
  53. Liu X, Cheng S, Liu H, Hu S, Zhang D, Ning H (2012b) A survey on gas sensing technology. Sensors 12(7):9635–9665CrossRefGoogle Scholar
  54. Lopez-Ruiz N, López-Torres J, Rodríguez MÁC, de Vargas-Sansalvador IP, Martínez-Olmos A (2015) Wearable system for monitoring of oxygen concentration in breath based on optical sensor. IEEE Sens J 15(7):4039–4045CrossRefGoogle Scholar
  55. Lorwongtragool P, Sowade E, Watthanawisuth N, Baumann RR, Kerdcharoen T (2014) A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array. Sensors 14(10):19700–19712CrossRefGoogle Scholar
  56. Luo S, Fu G, Chen H, Liu Z, Hong Q (2007) Gas-sensing properties and complex impedance analysis of Ce-added WO3 nanoparticles to VOC gases. Solid-state Electron 51(6):913–919CrossRefGoogle Scholar
  57. Ma GM, Wu Z, Zhou HY, Jiang J, Chen WX, Zheng SS, Li CR, Li X, Wang ZB (2016) A wireless and passive online temperature monitoring system for GIS based on surface-acoustic-wave sensor. IEEE Trans Power Delivery 31(3):1270–1280CrossRefGoogle Scholar
  58. Meharry DE, Hedges SA, inventors; BAE Systems Information, Electronic Systems Integration Inc, assignee (2009) Duplexer for simultaneous transmit and receive radar systems. United States patent US 7,633,435, 15 Dec 2009Google Scholar
  59. Mirzaei A, Leonardi SG, Neri G (2016) Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: a review. Ceram Int 42(14):15119–15141CrossRefGoogle Scholar
  60. Mitra SK, Kaiser JF (1993) Handbook for digital signal processing. WileyGoogle Scholar
  61. Moon SE, Choi NJ, Lee HK, Lee J, Yang WS (2013) Semiconductor-type MEMS gas sensor for real-time environmental monitoring applications. ETRI J 35(4):617–624CrossRefGoogle Scholar
  62. Nayak M, Singh D, Singh H, Kant R, Gupta A, Pandey SS, Mandal S, Ramanathan G, Bhattacharya S (2013) Integrated sorting, concentration and real time PCR based detection system for sensitive detection of microorganisms. Sci Report 20(3):3266CrossRefGoogle Scholar
  63. Oikonomou P, Botsialas A, Olziersky A, Kazas I, Stratakos I, Katsikas S, Dimas D, Mermikli K, Sotiropoulos G, Goustouridis D, Raptis I (2016) A wireless sensing system for monitoring the workplace environment of an industrial installation. Sens Actuators B: Chem 224:266–274CrossRefGoogle Scholar
  64. Ojha T, Misra S, Raghuwanshi NS (2015) Wireless sensor networks for agriculture: the state-of-the-art in practice and future challenges. Comput Electron Agric 1(118):66–84CrossRefGoogle Scholar
  65. Parks AN, Sample AP, Zhao Y, Smith JR (2013) A wireless sensing platform utilizing ambient RF energy. In: IEEE topical conference on power amplifiers for wireless and radio applications (PAWR 2013), 20 Jan 2013. IEEE, pp 160–162Google Scholar
  66. Pati S (2015) Gas sensors: an introduction. Int J Comput Math Sci 4(9)Google Scholar
  67. Probert Jones JR (1962) The radar equation in meteorology. Q J Roy Meteorol Soc 88(378):485–495CrossRefGoogle Scholar
  68. Pummakarnchana O, Tripathi N, Dutta J (2005) Air pollution monitoring and GIS modeling: a new use of nanotechnology based solid state gas sensors. Sci Technol Adv Mater 6(3–4):251–255CrossRefGoogle Scholar
  69. Quddious A, Yang S, Khan MM, Tahir FA, Shamim A, Salama KN, Cheema HM (2016) Disposable, paper-based, inkjet-printed humidity and H2S gas sensor for passive sensing applications. Sensors 16(12):2073CrossRefGoogle Scholar
  70. Rappaport TS (1996) Wireless communications: principles and practice. Prentice Hall PTR, New JerseyGoogle Scholar
  71. Roseline RA, Devapriya M, Sumathi P (2013) Pollution monitoring using sensors and wireless sensor networks: a survey. Int J Appl Innov Eng Manag 2(7):119–124Google Scholar
  72. Ruck GT, Barrick DE, Stuart WD, Krichbaum CK (1970) Radar cross section handbook. Volumes 1 & 2. Plenum Press, New YorkCrossRefGoogle Scholar
  73. Sandra PS, Sandeep CM, Nair V, Vindhuja MV, Nair SS, Raja MP (2017) WSN based industrial parameter monitoring using smartwatch. In: 2017 international conference on circuit, power and computing technologies (ICCPCT). IEEE, pp 1–6Google Scholar
  74. Sarkar TK, Wang H, Park S, Adve R, Koh J, Kim K, Zhang Y, Wicks MC, Brown RD (2001) A deterministic least-squares approach to space-time adaptive processing (STAP). IEEE Trans Antennas Propag 49(1):91–103CrossRefGoogle Scholar
  75. Scheer JA, Holm WA (2010) Introduction and radar overview. In: Richards MA, Scheer JA, Holm WA (eds) Principles of modern radar. Scitech Publishing, Raleigh, NCGoogle Scholar
  76. Sekiguchi K, Morinaga W, Sakamoto K, Tamura H, Yasui F, Mehrjouei M, Müller S, Möller D (2010) Degradation of VOC gases in liquid phase by photocatalysis at the bubble interface. Appl Catal B 97(1–2):190–197CrossRefGoogle Scholar
  77. Shabanov N, Gastellu-Etchegorry JP (2018) The stochastic Beer–Lambert–Bouguer law for discontinuous vegetation canopies. J Quant Spectrosc Radiat Trans 1(214):18–32CrossRefGoogle Scholar
  78. Sikarwar S, Yadav BC (2015) Opto-electronic humidity sensor: a review. Sens Actuators, A 233:54–70CrossRefGoogle Scholar
  79. Singh R, Singh E, Nalwa HS (2017) Inkjet printed nanomaterial based flexible radio frequency identification (RFID) tag sensors for the internet of nano things. RSC Adv 7(77):48597–48630CrossRefGoogle Scholar
  80. Skolnik MI. Radar handbookGoogle Scholar
  81. Smith JR, Sample AP, Powledge PS, Roy S, Mamishev A (2006) A wirelessly-powered platform for sensing and computation. In: International conference on ubiquitous computing. Springer, Berlin, pp 495–506Google Scholar
  82. Somov A, Baranov A, Spirjakin D (2014) A wireless sensor–actuator system for hazardous gases detection and control. Sens Actuators, A 210:157–164CrossRefGoogle Scholar
  83. Spirjakin D, Baranov A, Karelin A, Somov A (2015) Wireless multi-sensor gas platform for environmental monitoring. In: 2015 IEEE workshop on environmental, energy and structural monitoring systems (EESMS). IEEE, pp 232–237Google Scholar
  84. Spirjakin D, Baranov A, Akbari S (2018) Wearable wireless sensor system with RF remote activation for gas monitoring applications. IEEE Sens J 18(7):2976–2982CrossRefGoogle Scholar
  85. Stetter JR, Penrose WR, Yao S (2003) Sensors, chemical sensors, electrochemical sensors, and ECS. J Electrochem Soc 150(2):S11–S16CrossRefGoogle Scholar
  86. Trim RM (1990) Mode S: an introduction and overview (secondary surveillance radar). Electron Commun Eng J 2(2):53–59CrossRefGoogle Scholar
  87. Trouillet A, Marin E, Veillas C (2006) Fibre gratings for hydrogen sensing. Meas Sci Technol 17(5):1124CrossRefGoogle Scholar
  88. Vena A, Sydänheimo L, Tentzeris MM, Ukkonen L (2015) A fully inkjet-printed wireless and chipless sensor for CO2 and temperature detection. IEEE Sens J 15(1):89–99CrossRefGoogle Scholar
  89. Villatoro J, Diez A, Cruz JL, Andres MV (2001) Highly sensitive optical hydrogen sensor using circular Pd-coated singlemode tapered fibre. Electron Lett 37(16):1011–1012CrossRefGoogle Scholar
  90. Voles R, inventor; EMI Ltd, assignee (1989) Identification of friend or foe (IFF) systems. United States patent US 4,862,176, 29 Aug 1989Google Scholar
  91. Vyas R, Lakafosis V, Lee H, Shaker G, Yang L, Orecchini G, Traille A, Tentzeris MM, Roselli L (2011) Inkjet printed, self powered, wireless sensors for environmental, gas, and authentication-based sensing. IEEE Sens J 11(12):3139–3152CrossRefGoogle Scholar
  92. Walker DR, Pasquero J, inventors; BlackBerry Ltd, assignee (2017) Mobile wireless communications device providing guide direction indicator for near field communication (NFC) initiation and related methods. United States patent US 9,706,036, 11 Jul 2017Google Scholar
  93. Ward HR, inventor; Raytheon Co, assignee (1984) Radar processor. United States patent US 4,488,154, 11 Dec 1984Google Scholar
  94. Wheeler A (2007) Commercial applications of wireless sensor networks using ZigBee. IEEE Commun Mag 45(4)CrossRefGoogle Scholar
  95. Wu T, Wu F, Redoute JM, Yuce MR (2017) An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 5:11413–11422CrossRefGoogle Scholar
  96. Xu G, Zhang Q, Lu Y, Liu L, Ji D, Li S, Liu Q (2017a) Passive and wireless near field communication tag sensors for biochemical sensing with smartphone. Sens Actuators B: Chem 246:748–755CrossRefGoogle Scholar
  97. Xu G, Zhang Q, Lu Y, Liu L, Ji D, Li S, Liu Q (2017b) Passive and wireless near field communication tag sensors for biochemical sensing with smartphone. Sens Actuators B: Chem 1(246):748–755CrossRefGoogle Scholar
  98. Yadav BC, Sikarwar S, Bhaduri A, Kumar P (2015) Synthesis, characterization and development of opto-electronic humidity sensor using copper oxide thin film. Synthesis 2(11)Google Scholar
  99. Yang L, Zhang R, Staiculescu D, Wong CP, Tentzeris MM (2009) A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE Antennas Wirel Propag Lett 8:653–656CrossRefGoogle Scholar
  100. Yang J, Zhou J, Lv Z, Wei W, Song H (2015a) A real-time monitoring system of industry carbon monoxide based on wireless sensor networks. Sensors 15(11):29535–29546CrossRefGoogle Scholar
  101. Yang J, Zhou J, Lv Z, Wei W, Song H (2015b) A real-time monitoring system of industry carbon monoxide based on wireless sensor networks. Sensors 15(11):29535–29546CrossRefGoogle Scholar
  102. Yu J, Huang MF, Jia Z, Wang T, Chang GK (2008) A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal. IEEE Photonics Technol Lett 20(7):478–480CrossRefGoogle Scholar
  103. Zhang YN, Peng H, Qian X, Zhang Y, An G, Zhao Y (2017) Recent advancements in optical fiber hydrogen sensors. Sens Actuators B: Chem 244:393–416CrossRefGoogle Scholar
  104. Zhu R, Desroches M, Yoon B, Swager TM (2017) Wireless oxygen sensors enabled by Fe (II)-polymer wrapped carbon nanotubes. ACS Sens 2(7):1044–1050CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sudarsana Jena
    • 1
  • Ankur Gupta
    • 1
    Email author
  • Rohit Kumar Pippara
    • 1
  • Pramod Pal
    • 1
  • Adit
    • 1
  1. 1.School of Mechanical SciencesIndian Institute of Technology BhubaneswarBhubaneswarIndia

Personalised recommendations