Advertisement

Modelling the Influence of Urban Planning on the Financial and Environmental Impact of Neighbourhoods

  • Damien TrigauxEmail author
  • Karen Allacker
  • Frank De Troyer
Chapter
  • 530 Downloads
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Urban planning decisions related to the urban form, built density and neighbourhood location may affect the sustainability of neighbourhoods to an important extent. This chapter investigates the influence of urban planning on the financial and environmental impact of neighbourhoods. A number of schematic neighbourhood models with various layouts and built densities are analysed using an integrated life cycle approach, combining Life Cycle Costing (LCC) and Environmental Life Cycle Assessment (E-LCA). Furthermore, the influence of the neighbourhood location is assessed by comparing the impact of a rural and urban location. The results reveal substantial impact differences (up to 20–25%) between the neighbourhoods, showing the importance of good urban planning to decrease the financial and environmental impact of the built environment. The main reasons for these variations are the lower primary land use, lower energy use for heating and lower material use in high built-density neighbourhoods and compact buildings. Also, the neighbourhood location proved to be a key parameter to decrease the impact of user transport in neighbourhoods, with impact reductions up to 25–30% in an urban area.

Keywords

Integrated life cycle approach Life cycle costing Environmental life cycle assessment Neighbourhood layout Building design 

References

  1. Allacker K (2010) Sustainable building, the development of an evaluation method. PhD dissertation, KU LeuvenGoogle Scholar
  2. Allacker K, De Troyer F, Trigaux D et al (2013a) SuFiQuaD: sustainability, financial and quality evaluation of dwelling types. Belgian Science Policy (BELSPO), BrusselsGoogle Scholar
  3. Allacker K, Debacker W, Delem L et al (2013b) Environmental profile of building elements. OVAM, MechelenGoogle Scholar
  4. Allacker K, Souza DM de, Sala S (2014) Land use impact assessment in the construction sector: an analysis of LCIA models and case study application. Int J Life Cycle Assess 19:1799–1809.  https://doi.org/10.1007/s11367-014-0781-7CrossRefGoogle Scholar
  5. ASPEN (2015a) ASPENINDEX Regio België—Nieuwbouw (translated title: ASPENINDEX region Belgium—new construction). AntwerpenGoogle Scholar
  6. ASPEN (2015b) ASPENINDEX Regio België—Ombouw (translated title: ASPENINDEX region Belgium—renovation). AntwerpenGoogle Scholar
  7. Belgian Federal Government (2017a) Statistics Belgium—oil prices. http://statbel.fgov.be/nl/statistieken/cijfers/energie/prijzen/gemid_8/. Accessed 12 Mar 2017
  8. Belgian Federal Government (2017b) Statistics Belgium—building land prices. http://statbel.fgov.be/nl/statistieken/cijfers/economie/bouw_industrie/vastgoed/gemiddelde_prijs_bouwgronden/. Accessed 12 Mar 2017
  9. Berghauser Pont M, Haupt P (2010) Spacematrix. NAi Publishers, RotterdamGoogle Scholar
  10. CEN (2010) EN 15643-1 sustainability of construction works—sustainability assessment of buildings—part 1: general frameworkGoogle Scholar
  11. CEN (2011) EN 15978 sustainability assessment of construction works—assessment of environmental performance of buildings—calculation methodGoogle Scholar
  12. CEN (2013) EN 15804:2012+A1 sustainability of construction works—environmental product declaration—core rules for the product category of construction productsGoogle Scholar
  13. CEN (2015) EN 16627 sustainability of construction works—assessment of economic performance of buildings—calculation methodsGoogle Scholar
  14. CREG (2015) Overzicht en evolutie van de elektriciteits- en aardgasprijzen voor residentiele klantenGoogle Scholar
  15. De Nocker L, Debacker W (2015) Annex: update monetisation of the MMG method (2014). OVAM, MechelenGoogle Scholar
  16. Declercq K, Reumers S, Polders E, et al (2016) Onderzoek Verplaatsingsgedrag Vlaanderen 5.1 (2015–2016), Tabellenrapport (translated title: Research displacement behaviour in Flanders 5.1 (2015–2016), Tables report). Instituut voor Mobiliteit, Universiteit Hasselt, DiepenbeekGoogle Scholar
  17. Delhaye E, De Ceuster G, Maerivoet S (2010) Internalisering van externe kosten van transport in Vlaanderen (translated title: Internalisation of external cost of transport in Flanders). VMM, MechelenGoogle Scholar
  18. Delhaye E, De Ceuster G, Vanhove F, Maerivoet S (2017) Internalisering van externe kosten van transport in Vlaanderen: actualisering 2016 (translated title: Internalisation of external cost of transport in Flanders: actualisation 2016). VMM, AalstGoogle Scholar
  19. EC-JRC (2011) International reference life cycle data system (ILCD). In: Handbook—recommendations based on existing environmental impact assessment models and factors for life cycle assessment in a European context. Joint Research Centre (JRC) of European Commission—Institute for Environment and Sustainability (IES)Google Scholar
  20. European Environment Agency (2006) Urban sprawl in Europe, the ignored challenge. European Environment Agency, Copenhagen, DenmarkGoogle Scholar
  21. Feist W, Schnieders J, Loga T, et al (2001) Energiebilanzen mit dem Passivhaus Projektierungs Paket (translated title: Energy balance with the passive house project package). DarmstadtGoogle Scholar
  22. Flemish Government (2011) Duurzame woningbouw—Vlaamse Maatstaf voor Duurzaam Wonen en Bouwen—versie 2.0 (translated title: Sustainable housing—Flemish tool for sustainable living and building—version 2.0). Departement Leefmilieu, Natuur en Energie (LNE)Google Scholar
  23. Flemish Government (2016) Regional urban planning regulation on rainwater management. https://www.ruimtelijkeordening.be/Verordeningen/Hemelwater. Accessed 20 Aug 2017
  24. Flemish Government (2017) EPB requirements. www.energiesparen.be/epb/welkeeisen. Accessed 20 Aug 2017
  25. Frischknecht R, Jungbluth N, Althaus H et al (2007) Overview and methodology—final report ecoinvent data v2.0, no 1. ecoinvent Centre, DübendorfGoogle Scholar
  26. Ratti C, Baker N, Steemers K (2005) Energy consumption and urban texture. Energy Build 37:762–776.  https://doi.org/10.1016/j.enbuild.2004.10.010CrossRefGoogle Scholar
  27. Salat S (2009) Energy loads, CO2 emissions and building stocks: morphologies, typologies, energy systems and behaviour. Build Res Inf 37:598–609.  https://doi.org/10.1080/09613210903162126CrossRefGoogle Scholar
  28. Spon press (2015a) Spon’s external works and landschape price book 2015, 34th edn. AECOM, LondonGoogle Scholar
  29. Spon press (2015b) Spon’s civil engineering and highway works price book, 29th edn. AECOM, LondonGoogle Scholar
  30. Trigaux D (2017) Elaboration of a sustainability assessment method for neighbourhoods. PhD dissertation, KU LeuvenGoogle Scholar
  31. Trigaux D, Allacker K, De Troyer F (2014a) Model for the environmental impact assessment of neighbourhoods. In: Passerini G, Brebia CA (eds) Environmental impact II. WIT Press, Ancona, Italy, pp 103–114Google Scholar
  32. Trigaux D, Allacker K, De Troyer F (2014b) A simplified approach to integrate energy calculations in the life cycle assessment of neighbourhoods. In: Rawal R, Manu S, Khadpekar N (eds) Sustainable habitat for developing societies—book of abstracts. CEPT University Press, Ahmedabad, India, pp 55–55Google Scholar
  33. Trigaux D, Oosterbosch B, Allacker K, De Troyer F (2015) A design tool to optimize solar gains and energy use in neighbourhoods. In: Cucinella M, Pentella G, Fagnani A, D’Ambrosio L (eds) Architectuur in (R)evolution—book of abstracts. Ass. Building Green Futures, Bologna, Italy, pp 305–305Google Scholar
  34. Trigaux D, Allacker K, De Troyer F (2017a) Life cycle assessment of land use in neighborhoods. Procedia Environ Sci 38:595–602.  https://doi.org/10.1016/j.proenv.2017.03.133CrossRefGoogle Scholar
  35. Trigaux D, Oosterbosch B, De Troyer F, Allacker K (2017b) A design tool to assess the heating energy demand and the associated financial and environmental impact in neighbourhoods. Energy Build 152:516–523.  https://doi.org/10.1016/j.enbuild.2017.07.057CrossRefGoogle Scholar
  36. VMM (2015) Gemiddelde waterprijs 2015. https://www.vmm.be/data/gemiddelde-waterprijs. Accessed 24 Jan 2017
  37. Trimble Inc. (2017) SketchUp. www.sketchup.com. Accessed 21 Mar 2017
  38. VEA (2013) Energieprestatiecertificaten voor bestaande residentiële gebouwen in Vlaanderen—Formulestructuur (translated title: Energy performance certificate for existing residential buildings in Flanders—formula structure)Google Scholar
  39. VREG (2017) Electricity use of a household. www.vreg.be/nl/elektriciteitsverbruik-van-een-gezin. Accessed 28 Mar 2017

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ArchitectureKU LeuvenLouvainBelgium
  2. 2.EnergyVilleGenkBelgium
  3. 3.VITO, Unit Smart Energy and Built EnvironmentMolBelgium

Personalised recommendations