Skip to main content

Novel Method and Molten Salt Electrolytic Cell for Implementing a Hydrogen Fuel, Sustainable, Closed Clean Energy Cycle on a Large Scale

  • Chapter
  • First Online:
Energy Sustainability in Built and Urban Environments

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 1024 Accesses

Abstract

We describe an economical, novel method for implementing a hydrogen fuel clean energy cycle based on the chemical reaction between salinated (sea) or desalinated (fresh) water (H2O) and sodium (Na) metal that produces hydrogen (H2) fuel and sodium hydroxide (NaOH) byproduct. The sodium hydroxide (NaOH) is reprocessed in a solar powered electrolytic Na metal production plant that can result in excess production of chlorine (Cl2) from sodium chloride (NaCl) in sea salt mixed with NaOH, used to effect freezing point lowering of seawater reactant for hydrogen generation at reduced temperatures. The novel method and molten salt electrolytic cell enable natural separation of NaCl from NaOH, thereby limiting excess Cl2 production. The recovered NaCl can be used to produce concentrated brine solution from seawater for hydrogen generation in cold climates, or can be converted to sodium carbonate (Na2CO3) via the Solvay process for electrolytic production of Na metal without Cl2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 30 May 2019

    The original version of the book was inadvertently published with few typesetting errors in chapter 13. The corrected chapter and the book have been updated with the changes.

Abbreviations

c p :

Isobaric heat capacity (J/K·mol)

\( E_{\text{r}} {^\circ } ,E_{\text{o}} {^\circ } \) :

Standard reduction, oxidation half reaction potential (V)

\( E_{\text{ov}} {^\circ } \) :

Standard overall reaction potential (V)

E CELL :

Electrochemical cell potential (V)

ΔG :

Change in Gibbs free energy (kJ)

\( \varDelta G_{\text{f}} {^\circ } \) :

Standard Gibbs free energy of formation (kJ/mol)

ΔH :

Change in enthalpy (kJ)

\( \varDelta H_{\text{f}} {^\circ } \) :

Standard enthalpy of formation (kJ/mol)

ΔH fus :

Enthalpy of fusion (J/mol)

ΔH trs :

Enthalpy of transition (J/mol)

ΔH vap :

Enthalpy of vaporization (J/mol)

I CELL :

Electrolytic cell current (A)

n :

Number of moles of electrons transferred (mol)

P :

Absolute pressure (Pa)

R C :

Electrolytic cell resistance (Ω)

ΔS :

Change in entropy (J/K)

S ° :

Standard entropy (J/K·mol)

ΔS fus :

Entropy of fusion (J/K·mol)

ΔS trs :

Entropy of transition (J/K·mol)

ΔS vap :

Entropy of vaporization (J/K·mol)

T :

Absolute temperature, ITS-90 or Celsius temperature (K) or (°C)

T f :

Fusion temperature (K)

T b :

Vaporization temperature (K)

V CELL :

Voltage applied to electrolytic cell (V)

ΔV CELL :

Difference in voltage applied to electrolytic cell (V)

W e :

Electrical work (kJ)

F :

Faraday constant [96485.3365 (C/mol)]

g 0 :

Gravitational acceleration near earth’s surface [9.80665 (m/s2)]

P 0 :

Standard atmospheric pressure [101325 (Pa)]

T 0 :

Celsius zero point, ITS-90 [273.15 (K)]

T Eu :

Eutectic temperature of NaCl–H2O solution [−21.2 (°C)]

References

  • Akella J, Vaidya SN, Kennedy GC (1969) Melting of sodium chloride at pressures to 65 kbar. Phys Rev 185(3):1135

    Article  Google Scholar 

  • Alcock CB, Chase MW, Itkin VP (1994) Thermodynamic properties of the group IA elements. J Phys Chem Ref Data 23(3):385–497

    Article  Google Scholar 

  • Ambrose D, Hall DJ, Lee DA, Lewis GB, Mash CJ (1979) The vapour pressure of chlorine. J Chem Thermodyn 11(11): 1089–1094

    Article  Google Scholar 

  • Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Spencer NC, Kelly MT, Petillo PJ, Binder M (2000) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrogen Energy 25(10):969–975

    Article  Google Scholar 

  • Arblaster JW (2013) The thermodynamic properties of chlorine condensed phases. J Chem Thermodyn 56:12–14

    Article  Google Scholar 

  • Archer DG (1992) Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaCl · 2H2O(cr), and phase equilibria. J Phys Chem Ref Data 21(4):793–829

    Article  Google Scholar 

  • Baxter PJ, Kapila M, Mfonfu D (1989) Lake Nyos disaster, Cameroon, 1986: the medical effects of large scale emission of carbon dioxide? BMJ 298(6685):1437–1441

    Article  Google Scholar 

  • Bergthorson JM, Yavor Y, Palecka J, Georges W, Soo M, Vickery J, Goroshin S, Frost DL, Higgins AJ (2017) Metal-water combustion for clean propulsion and power generation. Appl Energy 186:13–27

    Article  Google Scholar 

  • Bessarabov D, Wang H, Li H, Zhao N (eds) (2016) PEM electrolysis for hydrogen production—principles and applications. CRC Press-Taylor & Francis Group, Boca Raton, Florida

    Google Scholar 

  • Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57(3):683–684

    Article  Google Scholar 

  • Brayard F (2000) An early report by Kurt Gerstein. Bulletin du Centre de recherche français à Jérusalem 6:157–176

    Google Scholar 

  • Buggeln M (2015) Experten der Vernichtung: Das T4-Reinhard-Netzwerk in den Lagern Belzec, Sobibor und Treblinka. German History 33(2):327–329

    Article  Google Scholar 

  • Butland ATD, Maddison RJ (1973) The specific heat of graphite: an evaluation of measurements. J Nucl Mater 49(1):45–56

    Article  Google Scholar 

  • Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934

    Article  Google Scholar 

  • Castner HY (1891) Process of manufacturing sodium and potassium, U.S. Patent 452,030

    Google Scholar 

  • Cohen JE (1995) Population growth and earth’s human carrying capacity. Science 269(5222):341–346

    Article  Google Scholar 

  • Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175

    Article  Google Scholar 

  • Davy H (1808) The Bakerian lecture: on some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Philos Trans R Soc Lond 98:1–44

    Google Scholar 

  • Dlugokencky EJ, Hall BD, Crotwell MJ, Montzka SA, Dutton G, Mühle J, Elkins JW (2016) Atmospheric composition. In: Blunden J, Arndt DS (eds) State of the climate in 2015. Bulletin of the American meteorological society, vol 97, no 8, pp 1–241

    Google Scholar 

  • Doherty BT, Kester DR (1974) Freezing-point of seawater. J Mar Res 32(2):285–300

    Google Scholar 

  • Downs JC (1924) Electrolytic process and cell, U.S. Patent 1,501,756

    Google Scholar 

  • Dworkin AS, Bredig MA (1960) The heat of fusion of the alkali metal halides. J Phys Chem 64(2):269–272

    Article  Google Scholar 

  • Feistel R, Wagner W (2005) High-pressure thermodynamic Gibbs function of ice and sea ice. J Mar Res 63(1):95–139

    Article  Google Scholar 

  • Feistel R, Wagner W (2006) A New Equation of State for H2O Ice lh. J Phys Chem Ref Data 35(2):1021–1047

    Article  Google Scholar 

  • Fink JK, Leibowitz L (1995) “Thermodynamic and transport properties of sodium liquid and vapor”, ANL/RE-95/2. Argonne National Laboratory, Argonne, IL

    Book  Google Scholar 

  • Giauque WF, Powell TM (1939) Chlorine. The heat capacity, vapor pressure, heats of fusion and vaporization, and entropy. J Am Chem Soc 61(8):1970–1974

    Article  Google Scholar 

  • Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci 16(96):441–458

    Article  MATH  Google Scholar 

  • Goodwin RD (1985) Carbon monoxide thermophysical properties from 68 to 1000 K at pressures to 100 MPa. J Phys Chem Ref Data 14(4):849–932

    Article  Google Scholar 

  • Guais A, Brand G, Jacquot L, Karrer M, Dukan S, Grevillot G, Molina TJ, Bonte J, Regnier M, Schwartz L (2011) Toxicity of carbon dioxide: a review. Chem Res Toxicol 24(12):2061–2070

    Article  Google Scholar 

  • Gurvich LV, Bergman GA, Gorokhov LN, Iorish VS, Leonidov VYa, Yungman VS (1996) Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. J Phys Chem Ref Data 25(4): 1211–1276

    Article  Google Scholar 

  • Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol 83(1):197–202

    Article  Google Scholar 

  • Hilsenrath J, Beckett CW, Benedict WS, Fano L, Hoge HJ, Masi JF, Nuttall RL, Touloukian YS, Woolley HW (1955) Tables of thermal properties of gases. US Department of Commerce, National Bureau of Standards Circular vol 564, pp 267–296

    Google Scholar 

  • Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01, Technical Report 02-16

    Google Scholar 

  • Janz GJ, Neuenschwander E, Kelly FJ (1963) High-temperature heat content and related properties for Li2CO3, Na2CO3, K2CO3, and the ternary eutectic mixture. Trans Faraday Soc 59:841–845

    Article  Google Scholar 

  • Klanchar M, Wintrode BD, Phillips JA (1997) Lithium-water reaction chemistry at elevated temperature. Energy Fuels 11(4):931–935

    Article  Google Scholar 

  • Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, Humphrey AM, Koenigsberg EJ, Lockwood JP, Tuttle ML, Wagner GN (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236:169–176

    Article  Google Scholar 

  • Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrogen Energy 27(10):1029–1034

    Article  Google Scholar 

  • Kojima Y, Kawai Y, Nakanishi H, Matsumoto S (2004a) Compressed hydrogen generation using chemical hydride. J Power Sources 135(1–2):36–41

    Article  Google Scholar 

  • Kojima Y, Suzuki K, Fukumoto K, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S (2004b) Development of 10 kW-scale hydrogen generator using chemical hydride. J Power Sources 125(1):22–26

    Article  Google Scholar 

  • Kojima Y, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S (2004c) Hydrogen generation by hydrolysis reaction of lithium borohydride. Int J Hydrogen Energy 29(12):1213–1217

    Article  Google Scholar 

  • Kong VCY, Kirk DW, Foulkes FR, Hinatsu JT (2003) Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. Int J Hydrogen Energy 28(2):205–214

    Article  Google Scholar 

  • Leadbetter AJ, Settatree GR (1969) Anharmonic effects in the thermodynamic properties of solids IV. The heat capacities of NaCl, KCl, KBr between 30 and 500 ℃. J Phys C Solid State Phys 2(3):385–392

    Article  Google Scholar 

  • Leider HR, Krikorian OH, Young DA (1973) Thermodynamic properties of carbon up to the critical point. Carbon 11(5):555–563

    Article  Google Scholar 

  • Lorenz R, Winzer R (1929) Die Löslichkeit von Natrium und Calcium in ihren Chloriden und Chloridgemischen. Zeitschrift für anorganische und allgemeine Chemie 183(1):121–126

    Article  Google Scholar 

  • Lutz W, Samir KC (2010) Dimensions of global population projections: what do we know about future population trends and structures? Philos Trans R Soc London B Biol Sci 365(1554):2779–2791

    Article  Google Scholar 

  • Makansi MM, Muendel CH, Selke WA (1955) Determination of the vapor pressure of sodium. J Phys Chem 59(1):40–42

    Article  Google Scholar 

  • Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Berrettoni M, Zangari G, Kiros Y (2012) Advanced alkaline water electrolysis. Electrochim Acta 82:384–391

    Article  Google Scholar 

  • McBride BJ, Heimel S, Ehlers JG, Gordon S (1963) “Thermodynamic properties to 6000° K for 210 substances involving the first 18 elements”, NASA SP-3001. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Meyers CH, Van Dusen MS (1933) The vapor pressure of liquid and solid carbon dioxide. Bur Stand J Res 10(3):381–412

    Article  Google Scholar 

  • Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res Part I Oceanogr Res Papers 55(1):50–72

    Article  Google Scholar 

  • Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems. Int J Hydrogen Energy 36(10):5983–5997

    Article  Google Scholar 

  • Newkirk AE, Aliferis I (1958) Drying and decomposition of sodium carbonate. Anal Chem 30(5):982–984

    Article  Google Scholar 

  • Redkin AA, Zaikov YP, Korzun IV, Reznitskikh OG, Yaroslavtseva TV, Kumkov SI (2015) Heat capacity of molten halides. J Phys Chem B 119(2):509–512

    Article  Google Scholar 

  • Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (2012) Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect 120(12):1671–1677

    Article  Google Scholar 

  • Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc 75(1):215–219

    Article  Google Scholar 

  • Selman JR, Maru HC (1981) Physical chemistry and electrochemistry of alkali carbonate melts, with special reference to the molten-carbonate fuel cell. In: Mamantov G, Braunstein J (eds) Advances in molten salt chemistry, volume 4. Plenum Press, New York, New York, pp 159–390

    Google Scholar 

  • Sigurdsson H, Devine JD, Tchua FM, Presser FM, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroun. J Volcanol Geoth Res 31(1–2):1–16

    Article  Google Scholar 

  • Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16(7):833–841

    Article  Google Scholar 

  • Stern AG (2015) Design of an efficient, high purity hydrogen generation apparatus and method for a sustainable, closed clean energy cycle. Int J Hydrogen Energy 40(32):9885–9906

    Article  Google Scholar 

  • Stern AG (2017) Scalable, self-contained sodium metal production plant for a hydrogen fuel clean energy cycle. In: Nikolic AB, Janda ZS (eds) Recent improvements of power plants management and technology. InTech Publisher, Vienna, pp 145–189. ISBN: 978-953-51-3357-5

    Google Scholar 

  • Stern AG (2018) A new sustainable hydrogen clean energy paradigm. Int J Hydrogen Energy 43(9):4244–4255

    Article  Google Scholar 

  • Stewart RB, Jacobsen RT, Wagner W (1991) Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa. J Phys Chem Ref Data 20(5):917–1021

    Article  Google Scholar 

  • Von Hevesy G (1909) Über die schmelzelektrolytische Abscheidung der Alkalimetalle aus Ätzalkalien und die Löslichkeit dieser Metalle in der Schmelze. Zeitschrift für Elektrochemie 15(15):529–536

    Article  Google Scholar 

  • Wagner W, Pruβ A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535

    Article  Google Scholar 

  • Wartenberg HV, Albrecht P (1921) Die Dampfdrucke einiger Salze. Zeitschrift für Elektrochemie 27:162–167

    Google Scholar 

  • Weast RC (1976–1977) Handbook of chemistry and physics. CRC Press, Cleveland, Ohio, C415, D67–D78, D79–D84, D141–D146

    Google Scholar 

  • Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35(1):88–96

    Article  Google Scholar 

  • Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326

    Article  Google Scholar 

  • Zhang JZ, Li J, Li Y, Zhao Y (2014) Hydrogen generation, storage and utilization. Wiley, Hoboken, New Jersey, pp 24–46, 51–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvin G. Stern .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stern, A.G. (2019). Novel Method and Molten Salt Electrolytic Cell for Implementing a Hydrogen Fuel, Sustainable, Closed Clean Energy Cycle on a Large Scale. In: Motoasca, E., Agarwal, A., Breesch, H. (eds) Energy Sustainability in Built and Urban Environments. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3284-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3284-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3283-8

  • Online ISBN: 978-981-13-3284-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics