Advertisement

Novel Method and Molten Salt Electrolytic Cell for Implementing a Hydrogen Fuel, Sustainable, Closed Clean Energy Cycle on a Large Scale

  • Alvin G. SternEmail author
Chapter
  • 555 Downloads
Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

We describe an economical, novel method for implementing a hydrogen fuel clean energy cycle based on the chemical reaction between salinated (sea) or desalinated (fresh) water (H2O) and sodium (Na) metal that produces hydrogen (H2) fuel and sodium hydroxide (NaOH) byproduct. The sodium hydroxide (NaOH) is reprocessed in a solar powered electrolytic Na metal production plant that can result in excess production of chlorine (Cl2) from sodium chloride (NaCl) in sea salt mixed with NaOH, used to effect freezing point lowering of seawater reactant for hydrogen generation at reduced temperatures. The novel method and molten salt electrolytic cell enable natural separation of NaCl from NaOH, thereby limiting excess Cl2 production. The recovered NaCl can be used to produce concentrated brine solution from seawater for hydrogen generation in cold climates, or can be converted to sodium carbonate (Na2CO3) via the Solvay process for electrolytic production of Na metal without Cl2 generation.

Keywords

Novel hydrogen clean energy cycle Novel electrolytic cell Novel electrolysis method Sodium metal production Molten salt electrolysis Solar powered electrolysis Safe hydrogen generation 

Nomenclature

cp

Isobaric heat capacity (J/K·mol)

\( E_{\text{r}} {^\circ } ,E_{\text{o}} {^\circ } \)

Standard reduction, oxidation half reaction potential (V)

\( E_{\text{ov}} {^\circ } \)

Standard overall reaction potential (V)

ECELL

Electrochemical cell potential (V)

ΔG

Change in Gibbs free energy (kJ)

\( \varDelta G_{\text{f}} {^\circ } \)

Standard Gibbs free energy of formation (kJ/mol)

ΔH

Change in enthalpy (kJ)

\( \varDelta H_{\text{f}} {^\circ } \)

Standard enthalpy of formation (kJ/mol)

ΔHfus

Enthalpy of fusion (J/mol)

ΔHtrs

Enthalpy of transition (J/mol)

ΔHvap

Enthalpy of vaporization (J/mol)

ICELL

Electrolytic cell current (A)

n

Number of moles of electrons transferred (mol)

P

Absolute pressure (Pa)

RC

Electrolytic cell resistance (Ω)

ΔS

Change in entropy (J/K)

S°

Standard entropy (J/K·mol)

ΔSfus

Entropy of fusion (J/K·mol)

ΔStrs

Entropy of transition (J/K·mol)

ΔSvap

Entropy of vaporization (J/K·mol)

T

Absolute temperature, ITS-90 or Celsius temperature (K) or (°C)

Tf

Fusion temperature (K)

Tb

Vaporization temperature (K)

VCELL

Voltage applied to electrolytic cell (V)

ΔVCELL

Difference in voltage applied to electrolytic cell (V)

We

Electrical work (kJ)

F

Faraday constant [96485.3365 (C/mol)]

g0

Gravitational acceleration near earth’s surface [9.80665 (m/s2)]

P0

Standard atmospheric pressure [101325 (Pa)]

T0

Celsius zero point, ITS-90 [273.15 (K)]

TEu

Eutectic temperature of NaCl–H2O solution [−21.2 (°C)]

References

  1. Akella J, Vaidya SN, Kennedy GC (1969) Melting of sodium chloride at pressures to 65 kbar. Phys Rev 185(3):1135CrossRefGoogle Scholar
  2. Alcock CB, Chase MW, Itkin VP (1994) Thermodynamic properties of the group IA elements. J Phys Chem Ref Data 23(3):385–497CrossRefGoogle Scholar
  3. Ambrose D, Hall DJ, Lee DA, Lewis GB, Mash CJ (1979) The vapour pressure of chlorine. J Chem Thermodyn 11(11): 1089–1094CrossRefGoogle Scholar
  4. Amendola SC, Sharp-Goldman SL, Saleem Janjua M, Spencer NC, Kelly MT, Petillo PJ, Binder M (2000) A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrogen Energy 25(10):969–975CrossRefGoogle Scholar
  5. Arblaster JW (2013) The thermodynamic properties of chlorine condensed phases. J Chem Thermodyn 56:12–14CrossRefGoogle Scholar
  6. Archer DG (1992) Thermodynamic properties of the NaCl + H2O system II. Thermodynamic properties of NaCl(aq), NaCl · 2H2O(cr), and phase equilibria. J Phys Chem Ref Data 21(4):793–829CrossRefGoogle Scholar
  7. Baxter PJ, Kapila M, Mfonfu D (1989) Lake Nyos disaster, Cameroon, 1986: the medical effects of large scale emission of carbon dioxide? BMJ 298(6685):1437–1441CrossRefGoogle Scholar
  8. Bergthorson JM, Yavor Y, Palecka J, Georges W, Soo M, Vickery J, Goroshin S, Frost DL, Higgins AJ (2017) Metal-water combustion for clean propulsion and power generation. Appl Energy 186:13–27CrossRefGoogle Scholar
  9. Bessarabov D, Wang H, Li H, Zhao N (eds) (2016) PEM electrolysis for hydrogen production—principles and applications. CRC Press-Taylor & Francis Group, Boca Raton, FloridaGoogle Scholar
  10. Bodnar RJ (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochim Cosmochim Acta 57(3):683–684CrossRefGoogle Scholar
  11. Brayard F (2000) An early report by Kurt Gerstein. Bulletin du Centre de recherche français à Jérusalem 6:157–176Google Scholar
  12. Buggeln M (2015) Experten der Vernichtung: Das T4-Reinhard-Netzwerk in den Lagern Belzec, Sobibor und Treblinka. German History 33(2):327–329CrossRefGoogle Scholar
  13. Butland ATD, Maddison RJ (1973) The specific heat of graphite: an evaluation of measurements. J Nucl Mater 49(1):45–56CrossRefGoogle Scholar
  14. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38(12):4901–4934CrossRefGoogle Scholar
  15. Castner HY (1891) Process of manufacturing sodium and potassium, U.S. Patent 452,030Google Scholar
  16. Cohen JE (1995) Population growth and earth’s human carrying capacity. Science 269(5222):341–346CrossRefGoogle Scholar
  17. Cohen JE (2003) Human population: the next half century. Science 302(5648):1172–1175CrossRefGoogle Scholar
  18. Davy H (1808) The Bakerian lecture: on some new phenomena of chemical changes produced by electricity, particularly the decomposition of the fixed alkalies, and the exhibition of the new substances which constitute their bases; and on the general nature of alkaline bodies. Philos Trans R Soc Lond 98:1–44Google Scholar
  19. Dlugokencky EJ, Hall BD, Crotwell MJ, Montzka SA, Dutton G, Mühle J, Elkins JW (2016) Atmospheric composition. In: Blunden J, Arndt DS (eds) State of the climate in 2015. Bulletin of the American meteorological society, vol 97, no 8, pp 1–241Google Scholar
  20. Doherty BT, Kester DR (1974) Freezing-point of seawater. J Mar Res 32(2):285–300Google Scholar
  21. Downs JC (1924) Electrolytic process and cell, U.S. Patent 1,501,756Google Scholar
  22. Dworkin AS, Bredig MA (1960) The heat of fusion of the alkali metal halides. J Phys Chem 64(2):269–272CrossRefGoogle Scholar
  23. Feistel R, Wagner W (2005) High-pressure thermodynamic Gibbs function of ice and sea ice. J Mar Res 63(1):95–139CrossRefGoogle Scholar
  24. Feistel R, Wagner W (2006) A New Equation of State for H2O Ice lh. J Phys Chem Ref Data 35(2):1021–1047CrossRefGoogle Scholar
  25. Fink JK, Leibowitz L (1995) “Thermodynamic and transport properties of sodium liquid and vapor”, ANL/RE-95/2. Argonne National Laboratory, Argonne, ILCrossRefGoogle Scholar
  26. Giauque WF, Powell TM (1939) Chlorine. The heat capacity, vapor pressure, heats of fusion and vaporization, and entropy. J Am Chem Soc 61(8):1970–1974CrossRefGoogle Scholar
  27. Gibbs JW (1878) On the equilibrium of heterogeneous substances. Am J Sci 16(96):441–458zbMATHCrossRefGoogle Scholar
  28. Goodwin RD (1985) Carbon monoxide thermophysical properties from 68 to 1000 K at pressures to 100 MPa. J Phys Chem Ref Data 14(4):849–932CrossRefGoogle Scholar
  29. Guais A, Brand G, Jacquot L, Karrer M, Dukan S, Grevillot G, Molina TJ, Bonte J, Regnier M, Schwartz L (2011) Toxicity of carbon dioxide: a review. Chem Res Toxicol 24(12):2061–2070CrossRefGoogle Scholar
  30. Gurvich LV, Bergman GA, Gorokhov LN, Iorish VS, Leonidov VYa, Yungman VS (1996) Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. J Phys Chem Ref Data 25(4): 1211–1276CrossRefGoogle Scholar
  31. Hall DL, Sterner SM, Bodnar RJ (1988) Freezing point depression of NaCl-KCl-H2O solutions. Econ Geol 83(1):197–202CrossRefGoogle Scholar
  32. Hilsenrath J, Beckett CW, Benedict WS, Fano L, Hoge HJ, Masi JF, Nuttall RL, Touloukian YS, Woolley HW (1955) Tables of thermal properties of gases. US Department of Commerce, National Bureau of Standards Circular vol 564, pp 267–296Google Scholar
  33. Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01, Technical Report 02-16Google Scholar
  34. Janz GJ, Neuenschwander E, Kelly FJ (1963) High-temperature heat content and related properties for Li2CO3, Na2CO3, K2CO3, and the ternary eutectic mixture. Trans Faraday Soc 59:841–845CrossRefGoogle Scholar
  35. Klanchar M, Wintrode BD, Phillips JA (1997) Lithium-water reaction chemistry at elevated temperature. Energy Fuels 11(4):931–935CrossRefGoogle Scholar
  36. Kling GW, Clark MA, Compton HR, Devine JD, Evans WC, Humphrey AM, Koenigsberg EJ, Lockwood JP, Tuttle ML, Wagner GN (1987) The 1986 Lake Nyos gas disaster in Cameroon, West Africa. Science 236:169–176CrossRefGoogle Scholar
  37. Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrogen Energy 27(10):1029–1034CrossRefGoogle Scholar
  38. Kojima Y, Kawai Y, Nakanishi H, Matsumoto S (2004a) Compressed hydrogen generation using chemical hydride. J Power Sources 135(1–2):36–41CrossRefGoogle Scholar
  39. Kojima Y, Suzuki K, Fukumoto K, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S (2004b) Development of 10 kW-scale hydrogen generator using chemical hydride. J Power Sources 125(1):22–26CrossRefGoogle Scholar
  40. Kojima Y, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S (2004c) Hydrogen generation by hydrolysis reaction of lithium borohydride. Int J Hydrogen Energy 29(12):1213–1217CrossRefGoogle Scholar
  41. Kong VCY, Kirk DW, Foulkes FR, Hinatsu JT (2003) Development of hydrogen storage for fuel cell generators II: utilization of calcium hydride and lithium hydride. Int J Hydrogen Energy 28(2):205–214CrossRefGoogle Scholar
  42. Leadbetter AJ, Settatree GR (1969) Anharmonic effects in the thermodynamic properties of solids IV. The heat capacities of NaCl, KCl, KBr between 30 and 500 ℃. J Phys C Solid State Phys 2(3):385–392CrossRefGoogle Scholar
  43. Leider HR, Krikorian OH, Young DA (1973) Thermodynamic properties of carbon up to the critical point. Carbon 11(5):555–563CrossRefGoogle Scholar
  44. Lorenz R, Winzer R (1929) Die Löslichkeit von Natrium und Calcium in ihren Chloriden und Chloridgemischen. Zeitschrift für anorganische und allgemeine Chemie 183(1):121–126CrossRefGoogle Scholar
  45. Lutz W, Samir KC (2010) Dimensions of global population projections: what do we know about future population trends and structures? Philos Trans R Soc London B Biol Sci 365(1554):2779–2791CrossRefGoogle Scholar
  46. Makansi MM, Muendel CH, Selke WA (1955) Determination of the vapor pressure of sodium. J Phys Chem 59(1):40–42CrossRefGoogle Scholar
  47. Marini S, Salvi P, Nelli P, Pesenti R, Villa M, Berrettoni M, Zangari G, Kiros Y (2012) Advanced alkaline water electrolysis. Electrochim Acta 82:384–391CrossRefGoogle Scholar
  48. McBride BJ, Heimel S, Ehlers JG, Gordon S (1963) “Thermodynamic properties to 6000° K for 210 substances involving the first 18 elements”, NASA SP-3001. National Aeronautics and Space Administration, Washington, DCGoogle Scholar
  49. Meyers CH, Van Dusen MS (1933) The vapor pressure of liquid and solid carbon dioxide. Bur Stand J Res 10(3):381–412CrossRefGoogle Scholar
  50. Millero FJ, Feistel R, Wright DG, McDougall TJ (2008) The composition of standard seawater and the definition of the reference-composition salinity scale. Deep-Sea Res Part I Oceanogr Res Papers 55(1):50–72CrossRefGoogle Scholar
  51. Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems. Int J Hydrogen Energy 36(10):5983–5997CrossRefGoogle Scholar
  52. Newkirk AE, Aliferis I (1958) Drying and decomposition of sodium carbonate. Anal Chem 30(5):982–984CrossRefGoogle Scholar
  53. Redkin AA, Zaikov YP, Korzun IV, Reznitskikh OG, Yaroslavtseva TV, Kumkov SI (2015) Heat capacity of molten halides. J Phys Chem B 119(2):509–512CrossRefGoogle Scholar
  54. Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ (2012) Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environ Health Perspect 120(12):1671–1677CrossRefGoogle Scholar
  55. Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc 75(1):215–219CrossRefGoogle Scholar
  56. Selman JR, Maru HC (1981) Physical chemistry and electrochemistry of alkali carbonate melts, with special reference to the molten-carbonate fuel cell. In: Mamantov G, Braunstein J (eds) Advances in molten salt chemistry, volume 4. Plenum Press, New York, New York, pp 159–390Google Scholar
  57. Sigurdsson H, Devine JD, Tchua FM, Presser FM, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroun. J Volcanol Geoth Res 31(1–2):1–16CrossRefGoogle Scholar
  58. Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16(7):833–841CrossRefGoogle Scholar
  59. Stern AG (2015) Design of an efficient, high purity hydrogen generation apparatus and method for a sustainable, closed clean energy cycle. Int J Hydrogen Energy 40(32):9885–9906CrossRefGoogle Scholar
  60. Stern AG (2017) Scalable, self-contained sodium metal production plant for a hydrogen fuel clean energy cycle. In: Nikolic AB, Janda ZS (eds) Recent improvements of power plants management and technology. InTech Publisher, Vienna, pp 145–189. ISBN: 978-953-51-3357-5Google Scholar
  61. Stern AG (2018) A new sustainable hydrogen clean energy paradigm. Int J Hydrogen Energy 43(9):4244–4255CrossRefGoogle Scholar
  62. Stewart RB, Jacobsen RT, Wagner W (1991) Thermodynamic properties of oxygen from the triple point to 300 K with pressures to 80 MPa. J Phys Chem Ref Data 20(5):917–1021CrossRefGoogle Scholar
  63. Von Hevesy G (1909) Über die schmelzelektrolytische Abscheidung der Alkalimetalle aus Ätzalkalien und die Löslichkeit dieser Metalle in der Schmelze. Zeitschrift für Elektrochemie 15(15):529–536CrossRefGoogle Scholar
  64. Wagner W, Pruβ A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535CrossRefGoogle Scholar
  65. Wartenberg HV, Albrecht P (1921) Die Dampfdrucke einiger Salze. Zeitschrift für Elektrochemie 27:162–167Google Scholar
  66. Weast RC (1976–1977) Handbook of chemistry and physics. CRC Press, Cleveland, Ohio, C415, D67–D78, D79–D84, D141–D146Google Scholar
  67. Xu J, Froment GF (1989) Methane steam reforming, methanation and water-gas shift: I. Intrinsic kinetics. AIChE J 35(1):88–96CrossRefGoogle Scholar
  68. Zeng K, Zhang D (2010) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36(3):307–326CrossRefGoogle Scholar
  69. Zhang JZ, Li J, Li Y, Zhao Y (2014) Hydrogen generation, storage and utilization. Wiley, Hoboken, New Jersey, pp 24–46, 51–69Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.AG STERN, LLCNewtonUSA

Personalised recommendations