Skip to main content

Xylanases for Food Applications

  • Chapter
  • First Online:
Book cover Green Bio-processes

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

Abstract

The development of new food products, improvement in food quality, and ease of food production process is of prime concern with the growing world population and rapidly rising demand for functional foods. These concerns make it imperative, the use of various enzymes such as glycoside hydrolases, lipases, proteases, transglutaminases, etc., in the processing of food and food ingredients. Crops and fruits used in food and brewing industry contain considerable amount of xylan. Xylan is a branched heteropolysaccharide and its main chain is composed of xylose subunits linked by β-(1 → 4) glycosidic bonds and contains different substitutions in the side chain. Xylanase cleaves β-(1 → 4) glycosidic bonds in heteroxylan randomly and converts it into xylooligosaccharides. In the last decade, xylanase has received appreciable attention owing to its applications in various food processing industries such as cereal food processing for the improvement of gluten agglomeration, baking industry for the improved texture of bread and cookies, clarification of fruit juices, production of xylooligosaccharide or arabinoxylooligosaccharides as prebiotic food supplements. This chapter presents a comprehensive overview of xylanase, its sources, production, and applications in food production and processing, with a particular focus on recent developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhyaru DN, Bhatt NS, Modi HA (2014) Enhanced production of cellulase-free, thermo-alkali-solvent-stable xylanase from Bacillus altitudinis DHN8, its characterization and application in sorghum straw saccharification. Biocatal Agric Biotechnol 3(2):182–190

    Google Scholar 

  • Adhyaru DN, Bhatt NS, Modi HA, Divecha J (2016) Insight on xylanase from Aspergillus tubingensis FDHN1: production, high yielding recovery optimization through statistical approach and application. Biocatal Agric Biotechnol 6:51–57

    Google Scholar 

  • AkhavanSepahy A, Ghazi S, AkhavanSepahy, M (2011) Cost-effective production and optimization of alkaline xylanase by indigenous Bacillus mojavensis AG137 fermented on agricultural waste. Enzyme Res. http://dx.doi.org/10.4061/2011/593624

  • Alberton LR, Vandenberghe LPDS, Assmann R, Fendrich RC, Rodriguéz-León J, Soccol CR (2009) Xylanase production by Streptomyces viridosporus T7A in submerged and solid-state fermentation using agro-industrial residues. Braz Arch Biol Technol 52(SPE):171–180

    Google Scholar 

  • Álvarez-Cervantes J, Hernández-Domínguez EM, Arana-Cuenca A, Díaz-Godínez G, Mercado-Flores Y (2013) Purification and characterization of xylanase SRXL1 from Sporisorium reilianum grown in submerged and solid-state fermentation. BioResources 8(4):5309–5318

    Article  Google Scholar 

  • Araki T, Inoue N, Morishita T (1998) Purification and characterization of β-1, 3-xylanase from a marine bacterium, Alcaligenes sp. XY-234. J Gen Appl Microbiol 44(4):269–274

    Google Scholar 

  • Awalgaonkar G, Sarkar S, Bankar S, Singhal RS (2015) Xylanase as a processing aid for papads, an Indian traditional food based on black gram. LWT Food Sci Technol 62(2):1148–1153

    Article  CAS  Google Scholar 

  • Ayadi DZ, Sayari AH, Hlima HB, Mabrouk SB, Mezghani M, Bejar S (2015) Improvement of Trichoderma reesei xylanase II thermal stability by serine to threonine surface mutations. Int J Biol Macromol 72:163–170

    Article  Google Scholar 

  • Bajaj BK, Manhas K (2012) Production and characterization of xylanase from Bacillus licheniformis P11 (C) with potential for fruit juice and bakery industry. Biocatal Agric Biotechnol 1(4):330–337

    CAS  Google Scholar 

  • Bala A, Singh B (2017) Concomitant production of cellulase and xylanase by thermophilic mould Sporotrichum thermophile in solid state fermentation and their applicability in bread making. World J Microbiol Biotechnol 33(6):109

    Article  Google Scholar 

  • Beg Q, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56(3–4):326–338

    Article  CAS  Google Scholar 

  • Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Biores Technol 165:314–318

    Article  CAS  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3(11):286–290

    Article  CAS  Google Scholar 

  • Binning R, Possmann P (1993) Apple juice. In: Fruit juice processing technology, pp 271–317. AgScience, Auburndale, FL, USA

    Google Scholar 

  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT (2008) Xylanases and their applications in baking industry. Food Technol Biotechnol 46(1):22–31

    CAS  Google Scholar 

  • Cauvain S, Young L (2006) Ingredients and their influences. In: Baked products. Science, technology and practice. Blackwell Publishing, Oxford, pp 72–98

    Google Scholar 

  • Cavella S, Romano A, Giancone T, Masi P (2008) The influence of dietary fibres on bubble development during bread making. In: Bubbles in food, vol 2, pp 311–321

    Google Scholar 

  • Chapla D, Divecha J, Madamwar D, Shah A (2010) Utilization of agro-industrial waste for xylanase production by Aspergillus foetidus MTCC 4898 under solid state fermentation and its application in saccharification. Biochem Eng J 49(3):361–369

    Article  CAS  Google Scholar 

  • Chapla D, Pandit P, Shah A (2012) Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Biores Technol 115:215–221

    Article  CAS  Google Scholar 

  • Chen H (2014) Chemical composition and structure of natural lignocellulose. In: Biotechnology of lignocellulose. Springer, Dordrecht, pp 25–71

    Google Scholar 

  • Chutani P, Sharma KK (2015) Biochemical evaluation of xylanases from various filamentous fungi and their application for the deinking of ozone treated newspaper pulp. Carbohyd Polym 127:54–63

    Article  CAS  Google Scholar 

  • Develaraja S, Reddy A, Yadav M, Jain S, Yadav H (2016) Whole grains in amelioration of metabolic derangements. J Nutr Health Food Sci 4(4):1–11

    Google Scholar 

  • Dhiman SS, Garg G, Sharma J, Mahajan R (2011) Characterization of statistically produced xylanase for enrichment of fruit juice clarification process. New Biotechnol 28(6):746–755

    Article  CAS  Google Scholar 

  • Ding C, Li M, Hu Y (2018) High-activity production of xylanase by Pichia stipitis: purification, characterization, kinetic evaluation and xylooligosaccharides production. Int J Biol Macromol 117:72–77

    Article  CAS  Google Scholar 

  • Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases from Humicolainsolens Y1 with application potentials in the brewing industry. Biores Technol 130:161–167

    Article  CAS  Google Scholar 

  • Dwivedi P, Vivekanand V, Ganguly R, Singh RP (2009) Parthenium sp. as a plant biomass for the production of alkalitolerant xylanase from mutant Penicillium oxalicum SAUE-3.510 in submerged fermentation. Biomass Bioenergy 33(4):581–588

    Google Scholar 

  • Elgharbi F, Hmida-Sayari A, Zaafouri Y, Bejar S (2015) Expression of an Aspergillus niger xylanase in yeast: Application in breadmaking and in vitro digestion. Int J Biol Macromol 79:103–109

    Article  CAS  Google Scholar 

  • Escobedo-Avellaneda Z, Moure MP, Chotyakul N, Torres JA, Welti-Chanes J, Lamela CP (2011) Benefits and limitations of food processing by high-pressure technologies: effects on functional compounds and abiotic contaminants. CyTA J Food 9(4):351–364

    Article  CAS  Google Scholar 

  • Fang TJ, Liao BC, Lee SC (2010) Enhanced production of xylanase by Aspergillus carneus M34 in solid-state fermentation with agricultural waste using statistical approach. New Biotechnol 27(1):25–32

    Article  CAS  Google Scholar 

  • Flander L, Rouau X, Morel MH, Autio K, Seppänen-Laakso T, Kruus K, Buchert J (2008) Effects of laccase and xylanase on the chemical and rheological properties of oat and wheat doughs. J Agric Food Chem 56(14):5732–5742

    Article  CAS  Google Scholar 

  • Flint HJ, McPherson CA, Martin J (1991) Expression of two xylanase genes from the rumen cellulolytic bacterium Ruminococcus flavefaciens 17 cloned in pUC13. Microbiology 137(1):123–129

    CAS  Google Scholar 

  • Goluguri BR, Thulluri C, Addepally U, Shetty PR (2016) Novel alkali-thermostable xylanase from Thielaviopsis basicola (MTCC 1467): purification and kinetic characterization. Int J Biol Macromol 82:823–829

    Article  CAS  Google Scholar 

  • Gowdhaman D, Ponnusami V (2015) Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential. Int J Biol Macromol 79:595–600

    Article  CAS  Google Scholar 

  • Guo B, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Gene cloning, expression and characterization of a new cold-active and salt-tolerant endo-β-1, 4-xylanase from marine Glaciecola mesophila KMM 241. Appl Microbiol Biotechnol 84(6):1107

    Article  CAS  Google Scholar 

  • Gupta U, Kar R (2009) Xylanase production by a thermo-tolerant Bacillus species under solid-state and submerged fermentation. Braz Arch Biol Technol 52(6):1363–1371

    Article  CAS  Google Scholar 

  • Gupta V, Garg S, Capalash N, Gupta N, Sharma P (2015) Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst Eng 38(5):947–956

    Google Scholar 

  • Harris AD, Ramalingam C (2010) Xylanases and its application in food industry: a review. J Exp Sci 1(7):1–11

    Google Scholar 

  • Ho H (2015) Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). J Food Process Technol 6(4)

    Google Scholar 

  • Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochem 46(6):1257–1263

    Article  CAS  Google Scholar 

  • Jia X, Qiao W, Tian W, Peng X, Mi S, Su H, Han Y (2016) Biochemical characterization of extra-and intracellular endoxylanse from thermophilic bacterium Caldicellulosiruptor kronotskyensis. Sci Rep 6:21672

    Article  CAS  Google Scholar 

  • John FJS, Rice JD, Preston JF (2006) Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 188(24):8617–8626

    Google Scholar 

  • Kapilan R, Arasaratnam V (2011) Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus. Rice Sci 18(1):36–45

    Article  Google Scholar 

  • Kendall CW, Esfahani A, Jenkins DJ (2010) The link between dietary fibre and human health. Food Hydrocolloids 24(1):42–48

    Article  CAS  Google Scholar 

  • Khurana S, Kapoor M, Gupta S, Kuhad RC (2007) Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology. Indian J Microbiol 47(2):144–152

    Article  CAS  Google Scholar 

  • Kim KK, Park HY, Park W, Kim IS, Lee ST (2005) Microbacterium xylanilyticum sp. nov., a xylan-degrading bacterium isolated from a biofilm. Int J Syst Evol Microbiol 55(5):2075–2079

    Google Scholar 

  • Ko CH, Tsai CH, Tu J, Lee HY, Ku LT, Kuo PA, Lai YK (2010) Molecular cloning and characterization of a novel thermostable xylanase from Paenibacillus campinasensis BL11. Process Biochem 45(10):1638–1644

    Article  CAS  Google Scholar 

  • Kumar A, Gupta R, Shrivastava B, Khasa YP, Kuhad RC (2012) Xylanase production from an alkalophilic actinomycete isolate Streptomyces sp. RCK-2010, its characterization and application in saccharification of second generation biomass. J Mol Catal B Enzymatic 74(3–4):170–177

    Google Scholar 

  • Kumar L, Nagar S, Kumar D, Garg N, Gupta VK (2013) Production of an alkali tolerant extracellular xylanase from Bacillus pumilus VLK-1 in solid state fermentation and its use in tomato juice clarification. Int J Cell Sci Biotechnol 2:1–10

    Google Scholar 

  • Kumar L, Nagar S, Mittal A, Garg N, Gupta VK (2014) Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J Food Sci Technol 51(9):1737–1749

    Article  CAS  Google Scholar 

  • Lakshmi GS, Rao CS, Rao RS, Hobbs PJ, Prakasham RS (2009) Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: a statistical optimization. Biochem Eng J 48(1):51–57

    Article  CAS  Google Scholar 

  • Laurie JI, Clarke JH, Ciruela A, Faulds CB, Williamson G, Gilbert HJ, Rixon JE, Millward-Sadler J, Hazlewood GP (1997) The NodB domain of a multidomain xylanase from Cellulomonas fimi deacetylates acetylxylan. FEMS Microbiol Lett 148(2):261–264

    Article  CAS  Google Scholar 

  • Lee WC, Yusof SALMAH, Hamid NSA, Baharin BS (2006) Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J Food Eng 73(1):55–63

    Article  CAS  Google Scholar 

  • Li Y, Liu Z, Zhao H, Xu Y, Cui F (2007) Statistical optimization of xylanase production from new isolated Penicillium oxalicum ZH-30 in submerged fermentation. Biochem Eng J 34(1):82–86

    Article  CAS  Google Scholar 

  • Li N, Meng K, Wang Y, Shi P, Luo H, Bai Y, Yang P, Yao B (2008) Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol 80(2):231

    Google Scholar 

  • Liao H, Sun S, Wang P, Bi W, Tan S, Wei Z, Mei X, Liu D, Raza W, Shen Q, Xu Y (2014) A new acidophilic endo-β-1, 4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity. J Ind Microbiol Biotechnol 41(7):1071–1083

    Article  CAS  Google Scholar 

  • Ling Ho H, Heng KL (2015) Xylanase production by Bacillus subtilis in cost-effective medium using soybean hull as part of medium composition under submerged fermentation (SmF) and solid state fermentation (SsF). J Biodivers Biopros Dev 2:143

    Google Scholar 

  • Liu X, Liu Y, Jiang Z, Liu H, Yang S, Yan Q (2018) Biochemical characterization of a novel xylanase from Paenibacillus barengoltzii and its application in xylooligosaccharides production from corncobs. Food Chem 264:310–318

    Article  CAS  Google Scholar 

  • Long L, Xu M, Shi Y, Lin Q, Wang J, Ding S (2018) Characterization of two new endo-β-1, 4-xylanases from Eupenicillium parvum 4–14 and their applications for production of feruloylated oligosaccharides. Appl Biochem Biotechnol 1–18. https://doi.org/10.1007/s12010-018-2775-6

  • Membrillo Venegas I, Fuentes-Hernández J, García-Rivero M, Martínez-Trujillo A (2013) Characteristics of Aspergillus niger xylanases produced on rice husk and wheat bran in submerged culture and solid-state fermentation for an applicability proposal. Int J Food Sci Technol 48(9):1798–1807

    Article  CAS  Google Scholar 

  • Menon G, Mody K, Keshri J, Jha B (2010) Isolation, purification, and characterization of haloalkaline xylanase from a marine Bacillus pumilus strain, GESF-1. Biotechnol Bioprocess Eng 15(6):998–1005

    Article  CAS  Google Scholar 

  • Min SY, Kim BG, Lee C, Hur HG, Ahn JH (2002) Purification, characterization, and cDNA cloning of xylanase from fungus Trichoderma strain SY. J Microbiol Biotechnol 12(6):1–5

    Google Scholar 

  • Mirande C, Mosoni P, Béra-Maillet C, Bernalier-Donadille A, Forano E (2010) Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87(6):2097–2105

    Article  CAS  Google Scholar 

  • Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G (2006) A symbiont-independent endo-1, 4-β-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant Microbe Interact 19(5):521–529

    Article  CAS  Google Scholar 

  • Mohana S, Shah A, Divecha J, Madamwar D (2008) Xylanase production by Burkholderia sp. DMAX strain under solid state fermentation using distillery spent wash. Bioresour Technol 99(16):7553–7564

    Google Scholar 

  • Nagar S, Mittal A, Kumar D, Kumar L, Kuhad RC, Gupta VK (2011) Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. New Biotechnol 28(6):581–587

    Article  CAS  Google Scholar 

  • O’Shea N, Kilcawley KN, Gallagher E (2016) Influence of α-amylase and xylanase on the chemical, physical and volatile compound properties of wheat bread supplemented with wholegrain barley flour. Eur Food Res Technol 242(9):1503–1514

    Article  Google Scholar 

  • Oliveira DS, Telis-Romero J, Da-Silva R, Franco CML (2014) Effect of a Thermoascus aurantiacus thermostable enzyme cocktail on wheat bread qualitiy. Food Chem 143:139–146

    Article  CAS  Google Scholar 

  • Pal A, Khanum F (2010) Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Biores Technol 101(19):7563–7569

    Article  CAS  Google Scholar 

  • Pal A, Khanum F (2011) Covalent immobilization of xylanase on glutaraldehyde activated alginate beads using response surface methodology: characterization of immobilized enzyme. Process Biochem 46(6):1315–1322

    Article  CAS  Google Scholar 

  • Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid state fermentation for the production of industrial enzymes. Curr Sci 149–162

    Google Scholar 

  • Panwar D, Srivastava PK, Kapoor M (2014) Production, extraction and characterization of alkaline xylanase from Bacillus sp. PKD-9 with potential for poultry feed. Biocatal Agric Biotechnol 3(2):118–125

    Google Scholar 

  • Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, Davies GJ, Gilbert HJ (2004) Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C how variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J Biol Chem 279(12):11777–11788

    Article  CAS  Google Scholar 

  • Pinelo M, Zeuner B, Meyer AS (2010) Juice clarification by protease and pectinase treatments indicates new roles of pectin and protein in cherry juice turbidity. Food Bioprod Process 88(2):259–265

    Article  CAS  Google Scholar 

  • Poorna CA, Prema P (2006) Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem Eng J 32(2):106–112

    Article  CAS  Google Scholar 

  • Rai P, Majumdar GC, Dasgupta SDES, De S (2004) Optimizing pectinase usage in pretreatment of mosambi juice for clarification by response surface methodology. J Food Eng 64(3):397–403

    Article  Google Scholar 

  • Reddy SS, Krishnan C (2016) Production of high-pure xylooligosaccharides from sugarcane bagasse using crude β-xylosidase-free xylanase of Bacillus subtilis KCX006 and their bifidogenic function. LWT Food Sci Technol 65:237–245

    Article  CAS  Google Scholar 

  • Romero-Fernández M, Moreno-Perez S, de Oliveira SM, Santamaría RI, Guisan JM, Rocha-Martin J (2018) Preparation of a robust immobilized biocatalyst of β-1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. New Biotechnol 44:50–58

    Article  Google Scholar 

  • Sadaf A, Khare SK (2014) Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Biores Technol 153:126–130

    Article  CAS  Google Scholar 

  • Saha BC (2000) α-l-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423

    Article  CAS  Google Scholar 

  • Saha BC (2002) Production, purification and properties of xylanase from a newly isolated Fusarium proliferatum. Process Biochem 37(11):1279–1284

    Article  CAS  Google Scholar 

  • Samanta AK, Kolte AP, Elangovan AV, Dhali A, Senani S, Sridhar M, Suresh KP, Jayapal N, Jayaram C, Roy S (2016) Value addition of corn husks through enzymatic production of xylooligosaccharides. Braz Arch Biol Technol 59. http://dx.doi.org/10.1590/1678-4324-2016160078

  • Sanghi A, Garg N, Sharma J, Kuhar K, Kuhad RC, Gupta VK (2008) Optimization of xylanase production using inexpensive agro-residues by alkalophilic Bacillus subtilis ASH in solid-state fermentation. World J Microbiol Biotechnol 24(5):633–640

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Ann Rev Plant Biol 61

    Google Scholar 

  • Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem 40(5):1763–1771

    Article  CAS  Google Scholar 

  • Sharma K, Antunes IL, Rajulapati V, Goyal A (2018a) Low-resolution SAXS and comparative modeling based structure analysis of endo-β-1, 4-xylanase a family 10 glycoside hydrolase from Pseudopedobacter saltans comb. nov. Int J Biol Macromol 112:1104–1114

    Article  CAS  Google Scholar 

  • Sharma K, Antunes IL, Rajulapati V, Goyal A (2018b) Molecular characterization of a first endo-acting β-1, 4-xylanase of family 10 glycoside hydrolase (PsGH10A) from Pseudopedobacter saltans comb. nov. Process Biochem 70:79–89

    Article  CAS  Google Scholar 

  • Siebert KJ (2006) Haze formation in beverages. LWT-Food Sci Technol 39(9):987–994

    Article  CAS  Google Scholar 

  • Sjostrom E (2013) Wood chemistry: fundamentals and applications. Elsevier

    Google Scholar 

  • Su Y, Zhang X, Hou Z, Zhu X, Guo X, Ling P (2011) Improvement of xylanase production by thermophilic fungus Thermomyces lanuginosus SDYKY-1 using response surface methodology. New Biotechnol 28(1):40–46

    Article  CAS  Google Scholar 

  • Suzuki M, Kato A, Nagata N, Komeda Y (2002) A xylanase, AtXyn1, is predominantly expressed in vascular bundles, and four putative xylanase genes were identified in the Arabidopsis thaliana genome. Plant Cell Physiol 43(7):759–767

    Article  CAS  Google Scholar 

  • Thomas L, Sindhu R, Binod P, Pandey A (2015) Production of a cellulase-free alkaline xylanase from Bacillus pumilus MTCC 5015 by submerged fermentation and its application in biobleaching. Indian J Exp Biol 53(6) 356–363

    Google Scholar 

  • Thomas L, Parameswaran B, Pandey A (2016) Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew Energy 98:9–15

    Article  CAS  Google Scholar 

  • Thomas L, Joseph A, Singhania RR, Patel AK, Pandey A (2017) Industrial enzymes: xylanases. In: Current developments in biotechnology and bioengineering, pp 127–148

    Google Scholar 

  • Verma AK, Goyal A (2016) A novel member of family 30 glycoside hydrolase subfamily 8 glucuronoxylan endo-β-1, 4-xylanase (CtXynGH30) from Clostridium thermocellum orchestrates catalysis on arabinose decorated xylans. J Mol Catal B Enzym 129:6–14

    Article  CAS  Google Scholar 

  • Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Biores Technol 107:333–338

    Article  CAS  Google Scholar 

  • Wainø M, Ingvorsen K (2003) Production of β-xylanase and β-xylosidase by the extremely halophilic archaeon Halorhabd usutahensis. Extremophiles 7(2):87–93

    Article  Google Scholar 

  • Walia A, Mehta P, Guleria S, Shirkot CK (2015) Improvement for enhanced xylanase production by Cellulosimicrobium cellulans CKMX1 using central composite design of response surface methodology. 3 Biotech 5(6):1053–1066

    Google Scholar 

  • Wang X, Luo H, Yu W, Ma R, You S, Liu W, Hou L, Zheng F, Xie X, Yao B (2016) A thermostable Gloeophyllum trabeum xylanase with potential for the brewing industry. Food Chem 199:516–523

    Article  CAS  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61(5):1810–1815

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YR, He J (2015) Characterization of a xylanase-producing Cellvibrio mixtus strain J3-8 and its genome analysis. Sci Rep 5:10521

    Article  Google Scholar 

  • Yamaura I, Koga T, Matsumoto T, Kato T (1997) Purification and some properties of endo-l, 4-β-d-xylanase from a fresh-water mollusc, Pomacea insularus (de Ordigny). Biosci Biotechnol Biochem 61(4):615–620

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Z (2017) Codon-optimized expression and characterization of a pH stable fungal xylanase in Pichia pastoris. Process Biochem 53:80–87

    Article  CAS  Google Scholar 

  • Yang SQ, Yan QJ, Jiang ZQ, Li LT, Tian HM, Wang YZ (2006) High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Biores Technol 97(15):1794–1800

    Article  CAS  Google Scholar 

  • Yasinok AE, Biran S, Kocabas A, Bakir U (2010) Xylanase from a soil isolate, Bacillus pumilus: gene isolation, enzyme production, purification, characterization and one-step separation by aqueous-two-phase system. World J Microbiol Biotechnol 26(9):1641–1652

    Article  Google Scholar 

  • Yegin S, Altinel B, Tuluk K (2018) A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1: effects on dough rheology and bread quality. Food Hydrocolloids 81:389–397

    Article  CAS  Google Scholar 

  • Zhao L, Meng K, Shi P, Bai Y, Luo H, Huang H, Wang Y, Yang P, Yao B (2013) A novel thermophilic xylanase from Achaetomium sp. Xz-8 with high catalytic efficiency and application potentials in the brewing and other industries. Process Biochem 48(12):1879–1885

    Google Scholar 

  • Zhou J, Gao Y, Dong Y, Tang X, Li J, Xu B, Mu Y, Wu Q, Huang Z (2012) A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3. J Ind Microbiol Biotechnol 39(7):965–975

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, K., Thakur, A., Goyal, A. (2019). Xylanases for Food Applications. In: Parameswaran, B., Varjani, S., Raveendran, S. (eds) Green Bio-processes. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3263-0_7

Download citation

Publish with us

Policies and ethics