Skip to main content

Microbial Community in Anaerobic Digestion System: Progression in Microbial Ecology

Part of the Energy, Environment, and Sustainability book series (ENENSU)

Abstract

Anaerobic digestion (AD) is a biochemical process that involves four microorganism groups, namely, hydrolyzers, acidogens, acetogens, and methanogens. These groups function in syntrophy and have intra-dependent metabolic pathways. Changes in one group (e.g., over-/underexpressed population and function) can alter this chain of anaerobic process and consequently AD performance. With recent progress in culture-independent techniques, an array of previously unknown and uncultured microorganisms has been recently uncovered in the AD process. Discoveries on the diversity and structure of the AD microbial community can provide new information on digester stability and performance (e.g., biogas production). This chapter provided a critical analysis of the current knowledge on the AD microbial community, focusing on the factors affecting microbial community and the relationship between microbial community and AD performance. Gaining a better understanding of microbial ecology could be the key for greater AD efficiency and biogas production capacity.

Keywords

  • Anaerobic digestion (AD)
  • Microbial community
  • Microbial ecology
  • Core microbiome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3259-3_15
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-3259-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9

References

  • Amani T, Nosrati M, Sreekrishnan TR (2010) Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects—a review. Environ Rev 18:255–278

    CAS  CrossRef  Google Scholar 

  • Amha YM, Sinha P, Lagman J, Gregori M, Smith AL (2017) Elucidating microbial community adaptation to anaerobic co-digestion of fats, oils, and grease and food waste. Water Res 123:277–289

    CAS  CrossRef  Google Scholar 

  • Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7:163–173

    CAS  CrossRef  Google Scholar 

  • Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    CAS  CrossRef  Google Scholar 

  • Azman S, Khadem AF, van Lier JB, Zeeman G, Plugge CM (2015) Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Crit Rev Environ Sci Technol 45:2523–2564

    CAS  CrossRef  Google Scholar 

  • Braun M, Mayer F, Gottschalk G (1981) Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch Microbiol 128:288–293

    CAS  CrossRef  Google Scholar 

  • Carballa M, Smits M, Etchebehere C, Boon N, Verstraete W (2011) Correlations between molecular and operational parameters in continuous lab-scale anaerobic reactors. Appl Microbiol Biotechnol 89:303–314

    CAS  CrossRef  Google Scholar 

  • Carballa M, Regueiro L, Lema JM (2015) Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr Opin Biotechnol 33:103–111

    CAS  CrossRef  Google Scholar 

  • Cazier EA, Trably E, Steyer JP, Escudie R (2015) Biomass hydrolysis inhibition at high hydrogen partial pressure in solid-state anaerobic digestion. Bioresour Technol 190:106–113

    CAS  CrossRef  Google Scholar 

  • Chen S, He Q (2015) Persistence of Methanosaeta populations in anaerobic digestion during process instability. J Ind Microbiol Biotechnol 42:1129–1137

    CAS  CrossRef  Google Scholar 

  • Chen Z, Wang Y, Li K, Zhou H (2014) Effects of increasing organic loading rate on performance and microbial community shift of an up-flow anaerobic sludge blanket reactor treating diluted pharmaceutical wastewater. J Biosci Bioeng 118:284–288

    CAS  CrossRef  Google Scholar 

  • de Jonge N, Moset V, Møller HB, Nielsen JL (2017) Microbial population dynamics in continuous anaerobic digester systems during start up, stable conditions and recovery after starvation. Bioresour Technol 232:313–320

    CrossRef  CAS  Google Scholar 

  • De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper DH, Verstraete W, Boon N (2015a) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199

    CrossRef  CAS  Google Scholar 

  • De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015b) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323

    CrossRef  CAS  Google Scholar 

  • Dearman B, Marschner P, Bentham RH (2006) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Appl Microbiol Biotechnol 69:589–596

    CAS  CrossRef  Google Scholar 

  • Ferguson RMW, Coulon F, Villa R (2016) Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res 100:348–356

    CAS  CrossRef  Google Scholar 

  • Gagliano MC, Braguglia CM, Gianico A, Mininni G, Nakamura K, Rossetti S (2015a) Thermophilic anaerobic digestion of thermal pretreated sludge: role of microbial community structure and correlation with process performances. Water Res 68:498–509

    CAS  CrossRef  Google Scholar 

  • Gagliano MC, Braguglia CM, Gallipoli A, Gianico A, Rossetti S (2015b) Microbial diversity in innovative mesophilic/thermophilic temperature-phased anaerobic digestion of sludge. Environ Sci Pollut Res 22:7339–7348

    CAS  CrossRef  Google Scholar 

  • Ghasimi DSM, Tao Y, de Kreuk M, Zandvoort MH, van Lier JB (2015) Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. Biotechnol Biofuels 8:171

    CrossRef  CAS  Google Scholar 

  • Gómez E, Martin J, Michel FC (2011) Effects of organic loading rate on reactor performance and archaeal community structure in mesophilic anaerobic digesters treating municipal sewage sludge. Waste Manage Res 29:1117–1123

    CrossRef  CAS  Google Scholar 

  • Gu Y, Chen X, Liu Z, Zhou X, Zhang Y (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol 158:149–155

    CAS  CrossRef  Google Scholar 

  • Guo X, Wang C, Sun F, Zhu W, Wu W (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour Technol 152:420–428

    CAS  CrossRef  Google Scholar 

  • Guo J, Peng Y, Ni B-J, Han X, Fan L, Yuan Z (2015) Dissecting microbial community structure and methane-producing pathways of a full-scale anaerobic reactor digesting activated sludge from wastewater treatment by metagenomic sequencing. Microb Cell Fact 14:33

    CrossRef  CAS  Google Scholar 

  • Han S, Liu Y, Zhang S, Luo G (2016) Reactor performances and microbial communities of biogas reactors: effects of inoculum sources. Appl Microbiol Biotechnol 100:987–995

    CAS  CrossRef  Google Scholar 

  • Hanreich A, Schimpf U, Zakrzewski M, Schlüter A, Benndorf D, Heyer R, Rapp E, Pühler A, Reichl U, Klocke M (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst Appl Microbiol 36:330–338

    CAS  CrossRef  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    CAS  CrossRef  Google Scholar 

  • Holmes DE, Smith JA (2016). Biologically produced methane as a renewable energy source. In: Sariaslani S, Michael Gadd G (eds) Advances in applied microbiology, vol 97. Academic Press, pp 1–61 (Chapter 1)

    Google Scholar 

  • Izquierdo JA, Sizova MV, Lynd LR (2010) Diversity of bacteria and glycosyl hydrolase family 48 genes in cellulolytic consortia enriched from thermophilic biocompost. Appl Environ Microbiol 76:3545–3553

    CAS  CrossRef  Google Scholar 

  • Jang HM, Kim M-S, Ha JH, Park JM (2015) Reactor performance and methanogenic archaea species in thermophilic anaerobic co-digestion of waste activated sludge mixed with food wastewater. Chem Eng J 276:20–28

    CAS  CrossRef  Google Scholar 

  • Jang HM, Ha JH, Kim M-S, Kim J-O, Kim YM, Park JM (2016) Effect of increased load of high-strength food wastewater in thermophilic and mesophilic anaerobic co-digestion of waste activated sludge on bacterial community structure. Water Res 99:140–148

    CAS  CrossRef  Google Scholar 

  • Ju F, Lau F, Zhang T (2017) Linking microbial community, environmental variables, and methanogenesis in anaerobic biogas digesters of chemically enhanced primary treatment sludge. Environ Sci Technol 51:3982–3992

    CAS  CrossRef  Google Scholar 

  • Kirkegaard RH, McIlroy SJ, Kristensen JM, Nierychlo M, Karst SM, Dueholm MS, Albertsen M, Nielsen PH (2017) The impact of immigration on microbial community composition in full-scale anaerobic digesters. Sci Rep 7:9343

    CrossRef  CAS  Google Scholar 

  • Kouzuma A, Tsutsumi M, Ishii SI, Ueno Y, Abe T, Watanabe K (2017) Non-autotrophic methanogens dominate in anaerobic digesters. Sci Rep 7:1510

    CrossRef  CAS  Google Scholar 

  • Kundu K, Sharma S, Sreekrishnan TR (2013) Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature. Bioresour Technol 129:538–547

    CAS  CrossRef  Google Scholar 

  • Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258

    CAS  CrossRef  Google Scholar 

  • Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836

    CAS  Google Scholar 

  • Lee I-S, Parameswaran P, Rittmann BE (2011) Effects of solids retention time on methanogenesis in anaerobic digestion of thickened mixed sludge. Bioresour Technol 102:10266–10272

    CAS  CrossRef  Google Scholar 

  • Lee S-H, Park J-H, Kim S-H, Yu BJ, Yoon J-J, Park H-D (2015) Evidence of syntrophic acetate oxidation by Spirochaetes during anaerobic methane production. Bioresour Technol 190:543–549

    CAS  CrossRef  Google Scholar 

  • Lee J, Shin SG, Han G, Koo T, Hwang S (2017) Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: key process parameters and microbial indicators of process instability. Bioresour Technol 245:689–697

    CAS  CrossRef  Google Scholar 

  • Lerm S, Kleyböcker A, Miethling-Graff R, Alawi M, Kasina M, Liebrich M, Würdemann H (2012) Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload. Waste Manage 32:389–399

    CAS  CrossRef  Google Scholar 

  • Li A, Chu YN, Wang X, Ren L, Yu J, Liu X, Yan J, Zhang L, Wu S, Li S (2013) A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels 6:3

    CAS  CrossRef  Google Scholar 

  • Li L, He Q, Ma Y, Wang X, Peng X (2015) Dynamics of microbial community in a mesophilic anaerobic digester treating food waste: relationship between community structure and process stability. Bioresour Technol 189:113–120

    CAS  CrossRef  Google Scholar 

  • Liu T, Sun L, Müller B, Schnürer A (2017) Importance of inoculum source and initial community structure for biogas production from agricultural substrates. Bioresour Technol 245:768–777

    CAS  CrossRef  Google Scholar 

  • Liu C, Wachemo AC, Tong H, Shi S, Zhang L, Yuan H, Li X (2018) Biogas production and microbial community properties during anaerobic digestion of corn stover at different temperatures. Bioresour Technol 261:93–103

    CAS  CrossRef  Google Scholar 

  • McCann KS (2000) The diversity–stability debate. Nature 405:228

    CAS  CrossRef  Google Scholar 

  • Moset V, Poulsen M, Wahid R, Højberg O, Møller HB (2015) Mesophilic versus thermophilic anaerobic digestion of cattle manure: methane productivity and microbial ecology. Microb Biotechnol 8:787–800

    CAS  CrossRef  Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53:802–809

    CAS  Google Scholar 

  • Nghiem LD, Koch K, Bolzonella D, Drewes JE (2017) Full scale co-digestion of wastewater sludge and food waste: bottlenecks and possibilities. Renew Sustain Energ Rev 72:354–362

    CAS  CrossRef  Google Scholar 

  • Nielsen HB, Uellendahl H, Ahring BK (2007) Regulation and optimization of the biogas process: propionate as a key parameter. Biomass Bioenergy 31:820–830

    CAS  CrossRef  Google Scholar 

  • Niu Q, Takemura Y, Kubota K, Li Y-Y (2015) Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Manage 43:114–122

    CAS  CrossRef  Google Scholar 

  • Ortseifen V, Stolze Y, Maus I, Sczyrba A, Bremges A, Albaum SP, Jaenicke S, Fracowiak J, Pühler A, Schlüter A (2016) An integrated metagenome and -proteome analysis of the microbial community residing in a biogas production plant. J Biotechnol 231:268–279

    CAS  CrossRef  Google Scholar 

  • Palatsi J, Viñas M, Guivernau M, Fernandez B, Flotats X (2011) Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol 102:2219–2227

    CAS  CrossRef  Google Scholar 

  • Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res 38:619–630

    CAS  CrossRef  Google Scholar 

  • Peng X, Zhang S, Li L, Zhao X, Ma Y, Shi D (2018) Long-term high-solids anaerobic digestion of food waste: effects of ammonia on process performance and microbial community. Bioresour Technol 262:148–158

    CAS  CrossRef  Google Scholar 

  • Rademacher A, Zakrzewski M, Schlüter A, Schönberg M, Szczepanowski R, Goesmann A, Pühler A, Klocke M (2012) Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol 79:785–799

    CAS  CrossRef  Google Scholar 

  • Razaviarani V, Buchanan ID (2014) Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages. Bioresour Technol 172:232–240

    CAS  CrossRef  Google Scholar 

  • Razaviarani V, Buchanan ID (2015) Anaerobic co-digestion of biodiesel waste glycerin with municipal wastewater sludge: microbial community structure dynamics and reactor performance. Bioresour Technol 182:8–17

    CAS  CrossRef  Google Scholar 

  • Regueiro L, Veiga P, Figueroa M, Alonso-Gutierrez J, Stams AJM, Lema JM, Carballa M (2012) Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. Microbiol Res 167:581–589

    CAS  CrossRef  Google Scholar 

  • Regueiro L, Lema JM, Carballa M (2015) Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour Technol 197:208–216

    CAS  CrossRef  Google Scholar 

  • Rivière D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach J, Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME J 3:700

    CrossRef  Google Scholar 

  • Shaw GT-W, Liu A-C, Weng C-Y, Chou C-Y, Wang D (2017) Inferring microbial interactions in thermophilic and mesophilic anaerobic digestion of hog waste. PLoS ONE 12:e0181395

    CrossRef  Google Scholar 

  • Shi X, Guo X, Zuo J, Wang Y, Zhang M (2018) A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: process stability and microbial community structure shifts. Waste Manage 75:261–269

    CAS  CrossRef  Google Scholar 

  • Shiratori H, Ikeno H, Ayame S, Kataoka N, Miya A, Hosono K, Beppu T, Ueda K (2006) Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Appl Environ Microbiol 72:3702–3709

    CAS  CrossRef  Google Scholar 

  • Shrestha S, Fonoll X, Khanal SK, Raskin L (2017) Biological strategies for enhanced hydrolysis of lignocellulosic biomass during anaerobic digestion: current status and future perspectives. Bioresour Technol 245:1245–1257

    CAS  CrossRef  Google Scholar 

  • Sun L, Müller B, Westerholm M, Schnürer A (2014) Syntrophic acetate oxidation in industrial CSTR biogas digesters. J Biotechnol 171:39–44

    CAS  CrossRef  Google Scholar 

  • Sun M-T, Fan X-L, Zhao X-X, Fu S-F, He S, Manasa MRK, Guo R-B (2017) Effects of organic loading rate on biogas production from macroalgae: performance and microbial community structure. Bioresour Technol 235:292–300

    CAS  CrossRef  Google Scholar 

  • Tsavkelova E, Prokudina L, Egorova M, Leontieva M, Malakhova D, Netrusov A (2018) The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas. Process Biochem 66:183–196

    CAS  CrossRef  Google Scholar 

  • Vanwonterghem I, Jensen PD, Ho DP, Batstone DJ, Tyson GW (2014) Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr Opin Biotechnol 27:55–64

    CAS  CrossRef  Google Scholar 

  • Vanwonterghem I, Jensen PD, Rabaey K, Tyson GW (2015) Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci Rep 5:8496

    CAS  CrossRef  Google Scholar 

  • Venkiteshwaran K, Milferstedt K, Hamelin J, Fujimoto M, Johnson M, Zitomer DH (2017) Correlating methane production to microbiota in anaerobic digesters fed synthetic wastewater. Water Res 110:161–169

    CAS  CrossRef  Google Scholar 

  • Ventorino V, Romano I, Pagliano G, Robertiello A, Pepe O (2018) Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste. Waste Manage 73:69–77

    CAS  CrossRef  Google Scholar 

  • Wang P, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production—a review. Bioresour Technol 248:29–36

    CAS  CrossRef  Google Scholar 

  • Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci 108:4158

    CAS  CrossRef  Google Scholar 

  • Westerholm M, Roos S, Schnürer A (2010) Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter. FEMS Microbiol Lett 309:100–104

    CAS  Google Scholar 

  • Wickham R, Xie S, Galway B, Bustamante H, Nghiem LD (2018) Anaerobic digestion of soft drink beverage waste and sewage sludge. Bioresour Technol 262:141–147

    CAS  CrossRef  Google Scholar 

  • Wilkins D, Rao S, Lu X, Lee PKH (2015) Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front Microbiol 6:1114

    CrossRef  Google Scholar 

  • Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623

    CAS  CrossRef  Google Scholar 

  • Wu Y-R, He J (2013) Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation. Bioresour Technol 139:5–12

    CAS  CrossRef  Google Scholar 

  • Xu R, Yang Z-H, Zheng Y, Zhang H-B, Liu J-B, Xiong W-P, Zhang Y-R, Ahmad K (2017) Depth-resolved microbial community analyses in the anaerobic co-digester of dewatered sewage sludge with food waste. Bioresour Technol 244:824–835

    CAS  CrossRef  Google Scholar 

  • Yang Z-H, Xu R, Zheng Y, Chen T, Zhao L-J, Li M (2016) Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease. Bioresour Technol 212:164–173

    CAS  CrossRef  Google Scholar 

  • Ziels RM, Karlsson A, Beck DAC, Ejlertsson J, Yekta SS, Bjorn A, Stensel HD, Svensson BH (2016) Microbial community adaptation influences long-chain fatty acid conversion during anaerobic codigestion of fats, oils, and grease with municipal sludge. Water Res 103:372–382

    CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long D. Nghiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Nguyen, L.N., Nguyen, A.Q., Nghiem, L.D. (2019). Microbial Community in Anaerobic Digestion System: Progression in Microbial Ecology. In: Bui, XT., Chiemchaisri, C., Fujioka, T., Varjani, S. (eds) Water and Wastewater Treatment Technologies. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-13-3259-3_15

Download citation