Advertisement

Genomic Resources and Marker-Assisted Selection in Jatropha curcas

  • Daniele Trebbi
  • Samathmika Ravi
  • Chiara Broccanello
  • Claudia Chiodi
  • Piergiorgio StevanatoEmail author
Chapter

Abstract

Jatropha curcas L. is currently attracting much attention as an oilseed crop, which can be used as biofuel and feasible feedstock for animals. In order to improve conventional breeding strategies, DNA variants are currently being exploited. The last few years have witnessed the development of molecular markers (SSRs, SNPs, AFLPs, RTNs, etc.) that can guide selection and result in enhancement of Jatropha productivity. The marker discovery process has resulted in the identification of more informative markers with the availability of genome and transcriptome sequences for this species. NGS has emerged as a powerful tool to detect numerous DNA sequence polymorphism-based markers within a short timeframe growing as a powerful tool for next-generation plant breeding. A holistic approach is therefore required to establish J. curcas as an economically viable crop integrating all the genomic resources available with selective breeding techniques of plants. This would be an ideal strategy for the domestication of Jatropha.

Keywords

Comparative genomics Genomic resources Linkage maps Molecular markers Transcriptomics 

References

  1. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99(6):1716–1721.  https://doi.org/10.1016/j.biortech.2007.03.051 CrossRefPubMedGoogle Scholar
  2. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11(2):106–115.  https://doi.org/10.1111/j.1461-0248.2007.01130.x CrossRefPubMedGoogle Scholar
  3. Bredeson JV, Lyons JB, Prochnik SE et al (2016) Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat Biotechnol 34(5):562–570.  https://doi.org/10.1038/nbt.3535 CrossRefPubMedGoogle Scholar
  4. Carvalho CR, Clarindo WR, Praca MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174(6):613–617.  https://doi.org/10.1016/j.plantsci.2008.03.010 CrossRefGoogle Scholar
  5. Chen MS, Pan BZ, Wang GJ et al (2014) Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment. BMC Plant Biol 14:318.  https://doi.org/10.1186/s12870-014-0318-z CrossRefPubMedPubMedCentralGoogle Scholar
  6. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363(1491):557–572.  https://doi.org/10.1098/rstb.2007.2170 CrossRefPubMedGoogle Scholar
  7. Costa GG, Cardoso KC, Del Bem LE (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462.  https://doi.org/10.1186/1471-2164-11-462 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Doerfler W (1983) DNA methylation and gene activity. Annu Rev Biochem 52:93–124.  https://doi.org/10.1146/annurev.bi.52.070183.000521 CrossRefPubMedGoogle Scholar
  9. Dubey G, Kollah B, Gour VK et al (2016) Diversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas. 3 Biotech 6(2):257.  https://doi.org/10.1007/s13205-016-0546-z CrossRefPubMedPubMedCentralGoogle Scholar
  10. Eswaran N, Parameswaran S, Anantharaman B et al (2012) Generation of an expressed sequence tag (EST) library from salt-stressed roots of Jatropha curcas for identification of abiotic stress-responsive genes. Plant Biol (Stuttgart, Germany) 14(3):428–437.  https://doi.org/10.1111/j.1438-8677.2011.00529.x CrossRefGoogle Scholar
  11. Goel G, Makkar HP, Francis G et al (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26(4):279–288.  https://doi.org/10.1080/10915810701464641 CrossRefPubMedGoogle Scholar
  12. Grover A, Kumari M, Singh S (2014) Analysis of Jatropha curcas transcriptome for oil enhancement and genic markers. Physiol Mol Biol Plants 20(1):139–142.  https://doi.org/10.1007/s12298-013-0204-4 CrossRefPubMedGoogle Scholar
  13. Henderson IR, Jacobsen SE (2007) Epigenetic inheritance in plants. Nature 447(7143):418–424.  https://doi.org/10.1038/nature05917 CrossRefPubMedGoogle Scholar
  14. Hirakawa H, Tsuchimoto S, Sakai H et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29(2):123–130.  https://doi.org/10.5511/plantbiotechnology.12.0515a CrossRefGoogle Scholar
  15. Hui W, Yang Y, Wu G et al (2017) Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L. Sci Rep 7(1):16421.  https://doi.org/10.1038/s41598-017-16545-5 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hyten DL, Song Q, Fickus EW et al (2010) High-throughput SNP discovery and assay development in common bean. BMC Genomics 11:475.  https://doi.org/10.1186/1471-2164-11-475 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jiang H, Wu P, Zhang S et al (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7(5):e36522.  https://doi.org/10.1371/journal.pone.0036522 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Jingura RM, Kamusoko R (2018) Experiences with Jatropha cultivation in sub-Saharan Africa: implications for biofuels policies. Energy Source Part B 13(4):224–230.  https://doi.org/10.1080/15567249.2012.675014 CrossRefGoogle Scholar
  19. Kanchanaketu T, Sangduen N, Toojinda T et al (2012) Genetic diversity analysis of Jatropha curcas L. (Euphorbiaceae) based on methylation-sensitive amplification polymorphism. Genet Mol Res 11(2):944–955.  https://doi.org/10.4238/2012.April.13.2 CrossRefPubMedGoogle Scholar
  20. Kearsey MJ, Farquhar AG (1998) QTL analysis in plants; where are we now? Heredity 80(Pt 2):137–142CrossRefGoogle Scholar
  21. King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenergy Res 4(3):211–221.  https://doi.org/10.1007/s12155-011-9114-x CrossRefGoogle Scholar
  22. King AJ, Montes LR, Clarke JG et al (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11(8):986–996.  https://doi.org/10.1111/pbi.12092 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lukens LN, Zhan S (2007) The plant genome's methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10(3):317–322.  https://doi.org/10.1016/j.pbi.2007.04.012 CrossRefPubMedGoogle Scholar
  24. Madhaiyan M, Peng N, Te NS et al (2013) Improvement of plant growth and seed yield in Jatropha curcas by a novel nitrogen-fixing root associated Enterobacter species. Biotechnol Biofuels 6(1):140.  https://doi.org/10.1186/1754-6834-6-140 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8(10):1172–1182.  https://doi.org/10.1002/biot.201300231 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Marinho ACTA, Vasconcelos S, Vasconcelos EV et al (2018) Karyotype and genome size comparative analyses among six species of the oilseed-bearing genus Jatropha (Euphorbiaceae). Genet Mol Biol.  https://doi.org/10.1590/1678-4685-GMB-2017-0120
  27. Mastan SG (2016) Molecular characterization of genetic and epigenetic divergence in selected Jatropha curcas L. germplasm using AFLP and MS-AFLP markers. Plant Gene 8:42–49.  https://doi.org/10.1016/j.plgene.2016.10.001 CrossRefGoogle Scholar
  28. Mastan SG, Rathore MS, Bhatt VD et al (2012) Assessment of changes in DNA methylation by methylation-sensitive amplification polymorphism in Jatropha curcas L. subjected to salinity stress. Gene 508(1):125–129.  https://doi.org/10.1016/j.gene.2012.07.063 CrossRefPubMedGoogle Scholar
  29. Modi MK, Reddy JR, Rao BV et al (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98(6):1260–1264.  https://doi.org/10.1016/j.biortech.2006.05.006 CrossRefPubMedGoogle Scholar
  30. Mohanty SR (2017) Endophytes of Jatropha curcas promote growth of maize. Rhizosphere 3:20–28.  https://doi.org/10.1016/j.rhisph.2016.11.001 CrossRefGoogle Scholar
  31. Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057.  https://doi.org/10.1016/j.tplants.2016.08.008 CrossRefPubMedGoogle Scholar
  32. Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12:191.  https://doi.org/10.1186/1471-2164-12-191 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Natarajan P, Kanagasabapathy D, Gunadayalan G et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606.  https://doi.org/10.1186/1471-2164-11-606 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pandey P, Malik AA, Kumar K et al (2016) Changes in DNA methylation levels during seed development in Jatropha curcas. J Genet 95(4):e13–e18CrossRefGoogle Scholar
  35. Qin S, Yuan B, Zhang YJ (2012) Nocardioides panzhihuaensis sp. nov., a novel endophytic actinomycete isolated from medicinal plant Jatropha curcas L. Antonie Van Leeuwenhoek 102(2):353–360.  https://doi.org/10.1007/s10482-012-9745-8 CrossRefPubMedGoogle Scholar
  36. Rafii MY, Shabanimofrad M, Puteri Edaroyati MW et al (2012) Analysis of the genetic diversity of physic nut, Jatropha curcas L. accessions using RAPD markers. Mol Biol Rep 39(6):6505–6511.  https://doi.org/10.1007/s11033-012-1478-2 CrossRefPubMedGoogle Scholar
  37. Sabandar CW, Ahmat N, Jaafar FM et al (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29.  https://doi.org/10.1016/j.phytochem.2012.10.009 CrossRefPubMedGoogle Scholar
  38. Sapeta H, Lourenco T, Lorenz S et al (2016) Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance. J Exp Bot 67(3):845–860.  https://doi.org/10.1093/jxb/erv499 CrossRefPubMedGoogle Scholar
  39. Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18(1):65–76.  https://doi.org/10.1093/dnares/dsq030 CrossRefPubMedGoogle Scholar
  40. Sharma A, Chauhan RS (2011) Repertoire of SSRs in the castor bean genome and their utilization in genetic diversity analysis in Jatropha curcas. Comp Funct Genom 2011:286089.  https://doi.org/10.1155/2011/286089 CrossRefGoogle Scholar
  41. Sudhakar Johnson T, Eswaran N, Sujatha M (2011) Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep 30(9):1573–1591.  https://doi.org/10.1007/s00299-011-1083-1 CrossRefPubMedGoogle Scholar
  42. Sudheer Pamidimarri DV, Singh S, Mastan SG et al (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36(6):1357–1364.  https://doi.org/10.1007/s11033-008-9320-6 CrossRefPubMedGoogle Scholar
  43. Tanksley SD (1993) Mapping polygenes. Ann Rev Genet 27:205–233.  https://doi.org/10.1146/annurev.ge.27.120193.001225 CrossRefPubMedGoogle Scholar
  44. Tatikonda L, Wani SP, Kannan S (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176(4):505–513.  https://doi.org/10.1016/j.plantsci.2009.01.006 CrossRefPubMedGoogle Scholar
  45. Tian W, Paudel D, Vendrame W et al (2017) Enriching genomic resources and marker development from transcript sequences of Jatropha curcas for microgravity studies. Int J Genom 2017:8614160.  https://doi.org/10.1155/2017/8614160 CrossRefGoogle Scholar
  46. Trebbi D, Papazoglou EG, Saadaoui E et al (2015) Assessment of genetic diversity in different accessions of Jatropha curcas. Ind Crop Prod 75:35–39.  https://doi.org/10.1016/j.indcrop.2015.06.051 CrossRefGoogle Scholar
  47. Vasquez-Mayorga M, Fuchs EJ, Hernandez EJ et al (2017) Molecular characterization and genetic diversity of Jatropha curcas L. in Costa Rica. Peer J 5:e2931.  https://doi.org/10.7717/peerj.2931 CrossRefPubMedGoogle Scholar
  48. Wang CM, Liu P, Yi C et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632.  https://doi.org/10.1371/journal.pone.0023632 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Wang H, Zou Z, Wang S et al (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8(12):e82817.  https://doi.org/10.1371/journal.pone.0082817 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Weber JL (1990) Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics 7(4):524–530CrossRefGoogle Scholar
  51. Wen M, Wang H, Xia Z et al (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42.  https://doi.org/10.1186/1756-0500-3-42 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81(5):810–821.  https://doi.org/10.1111/tpj.12761 CrossRefPubMedGoogle Scholar
  53. Xia Z, Zhang S, Wen M et al (2018) Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Biotechnol Biofuels 11:3.  https://doi.org/10.1186/s13068-017-1004-9 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yi C, Zhang S, Liu X et al (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L.? BMC Plant Biol 10:259.  https://doi.org/10.1186/1471-2229-10-259 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zhang L, Zhang C, Wu P et al (2014) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 9(5):e97878.  https://doi.org/10.1371/journal.pone.0097878 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zou Z, Yang L, Gong J et al (2016) Genome-wide identification of Jatropha curcas aquaporin genes and the comparative analysis provides insights into the gene family expansion and evolution in Hevea brasiliensis. Front Plant Sci 7:395.  https://doi.org/10.3389/fpls.2016.00395 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Daniele Trebbi
    • 1
  • Samathmika Ravi
    • 2
  • Chiara Broccanello
    • 2
  • Claudia Chiodi
    • 2
  • Piergiorgio Stevanato
    • 2
    Email author
  1. 1.Syngenta Seeds Inc.GilroyUSA
  2. 2.DAFNAE, Università degli Studi di PadovaLegnaroItaly

Personalised recommendations