Application of Molecular Markers in Genetic Improvement of Jatropha

  • Anoop Anand Malik
  • Shashi Bhushan TripathiEmail author


Jatropha curcas L. has gained prominence during the past 15 years as a potential source of biodiesel. Massive plantations of Jatropha were raised world-wide between 2003 and 2008. Unfortunately, these plantations failed to deliver the promised yields primarily due to unrealistic assumptions and also due to the use of uncharacterised planting material. However, several initiatives have been taken towards the characterisation and genetic improvement for oil yields and other important traits. An excellent foundation in the form of genetic and genomic tools such as DNA-based molecular markers, linkage maps, genetic transformation and mapping populations has been developed in Jatropha so far. These resources are being used to develop Jatropha varieties with desirable traits such as high seed yield and oil content. Development of non-toxic varieties is also being attempted to make the oil cake usable as cattle feed.

The current chapter describes the past research and future trends in applications of various molecular marker technologies for the genetic improvement of Jatropha.


Genome sequencing Interspecific hybridization Linkage mapping Next-generation genotyping QTL mapping 



The authors wish to thank the TERI School of Advanced Studies for its kind support in carrying out this study.


  1. Adugna A, Sweeney PM, Bekele E (2013) Estimation of in situ mating systems in wild sorghum (Sorghum bicolor (L.) Moench) in Ethiopia using SSR-based progeny array data: implications for the spread of crop genes into the wild. J Genet 92:3–10CrossRefGoogle Scholar
  2. Amkul K, Laosatit K, Somta P et al (2017) Mapping of QTLs for seed phorbol esters, a toxic chemical in Jatropha curcas L. Genes 8:205CrossRefGoogle Scholar
  3. Anggraeni TDA, Satyawan D, Kang YJ et al (2018) Genetic diversity of Jatropha curcas collections from different islands in Indonesia. Plant Genet Resour 16:1–9. CrossRefGoogle Scholar
  4. Azevedo Peixoto LD, Laviola BG, Alves AA et al (2017) Breeding Jatropha curcas by genomic selection: a pilot assessment of the accuracy of predictive models. PLoS One 12:e0173368. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barrett BA, Kidwell KK (1998) AFLP based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271CrossRefGoogle Scholar
  7. Basha S, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  8. Basha SD, George F, Makkar HPS et al (2009) A comparative study of biochemical traits and molecular markers for assessment of genetic relationships between Jatropha curcas (L.) germplasm from different countries. Plant Sci 176:812–823CrossRefGoogle Scholar
  9. Biabani A, Rafii MY, Saleh GB et al (2013) Inter- and intra-population genetic variations in Jatropha curcas populations revealed by inter-simple sequence repeat molecular markers. Maydica 58:111–118Google Scholar
  10. Blum E, Liu K, Mazourek M et al (2002) Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45:702–705CrossRefGoogle Scholar
  11. Bressan EA, Sebbenn AM, Ferreira RR et al (2013) Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis. Tree Genet Genom 9:1089–1097CrossRefGoogle Scholar
  12. Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824CrossRefGoogle Scholar
  13. Cai Y, Sun D, Wu G et al (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenergy 34:1739–1750CrossRefGoogle Scholar
  14. Carvalho CR, Clarindo WR, Praca MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617. CrossRefGoogle Scholar
  15. Chaix G, Gerber S, Razafimaharo V et al (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712CrossRefGoogle Scholar
  16. Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Dev 11:685–690CrossRefGoogle Scholar
  17. Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B Biol Sci 363:557–572CrossRefGoogle Scholar
  18. Cox TS, Murphy JP, Rodgers DM (1986) Changes in genetic diversity in the red winter wheat regions of the United States. Proc Natl Acad Sci U S A 83:5583–5586CrossRefGoogle Scholar
  19. Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478CrossRefGoogle Scholar
  20. Dehgan B, Webster GL (1979) Morphology and infrageneric relationships of the genus Jatropha (Euphorbiaceae). Univ Calif Pub Bot 74:73Google Scholar
  21. Dhillon RS, Hooda MS, Jattan M et al (2009) Development and molecular characterization of interspecific hybrids of Jatropha curcas x Jatropha integerimma. Indian J Biotechnol 8:384–390Google Scholar
  22. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gaiotto FA, Bramucci M, Grattapaglia D (1997) Estimation of outcrossing rate in a breeding population of Eucalyptus urophylla with dominant RAPD and AFLP markers. Theor Appl Genet 95:842–849CrossRefGoogle Scholar
  24. Ganesh Ram S, Parthiban K, Senthil Kumar R et al (2008) Genetic diversity among Jatropha species as revealed by RAPD markers. Genet Res Crop Evol 55:803–809CrossRefGoogle Scholar
  25. Gu K, Tian D, Mao H et al (2015) Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing. BMC Plant Biol 15:242. CrossRefPubMedPubMedCentralGoogle Scholar
  26. He W, King AJ, Khan MA et al (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49:1183–1190 S0981-9428(11)00196-3[pii]. CrossRefPubMedGoogle Scholar
  27. Hirakawa H, Tsuchimoto S, Sakai H et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol J 29:123–130CrossRefGoogle Scholar
  28. Jansen J, van Hintum T (2007) Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428CrossRefGoogle Scholar
  29. King AJ, Montes LR, Clarke JG et al (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11:986–996CrossRefGoogle Scholar
  30. Laosatit K, Tanya P, Muakrong N et al (2014) Development of interspecific and intergeneric hybrids among jatropha-related species and verification of the hybrids using EST-SSR markers. Plant Genet Resour 12:S58–S61. CrossRefGoogle Scholar
  31. Li C, Ng A, Xie L et al (2016) Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep 35:103–114. CrossRefPubMedGoogle Scholar
  32. Li H, Tsuchimoto S, Harada K et al (2017) Genetic tracing of Jatropha curcas L. from its mesoamerican origin to the world. Front Plant Sci 8:1539. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu P, Wang CM, Li L et al (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in Jatropha. BMC Plant Biol 11:132. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maghuly F, Jankowicz-Cieslak J, Till BJ et al (2013) The use of EcoTILLING for the genetic improvement of Jatropha curcas L. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop, Genetic Improvement and Biotechnology, vol 2. Springer, New York, pp 335–349. CrossRefGoogle Scholar
  36. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215CrossRefGoogle Scholar
  37. Makkar HPS, Francis G, Becker K (2008) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88:1542–1548CrossRefGoogle Scholar
  38. Martin GB, Brommonshenkel S, Chunwongse J et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1435CrossRefGoogle Scholar
  39. Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  40. Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21:1045–1057. CrossRefPubMedGoogle Scholar
  41. Na-ek Y, Wongkaew A, Phumichai T et al (2011) Genetic diversity of physic nut (Jatropha curcas L.) revealed by SSR markers. J Crop Sci Biotechnol 14:105–110CrossRefGoogle Scholar
  42. Osorio LRM, Salvador AFT, Jongschaap REE et al (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14:77CrossRefGoogle Scholar
  43. Pamidimarri DVNS, Chattopadhyay B, Reddy MP (2009a) Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Mol Biol Rep 36:1929–1935. CrossRefGoogle Scholar
  44. Pamidimarri DVNS, Pandya N, Reddy MP et al (2009b) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP. Mol Biol Rep 36:901–907. CrossRefGoogle Scholar
  45. Parthiban KT, Kumar RS, Thiyagarajan P et al (2009) Hybrid progenies in Jatropha – a new development. Curr Sci 96:815–823Google Scholar
  46. Peixoto LA, Laviola BG, Bhering LL et al (2016) Oil content increase and toxicity reduction in jatropha seeds through family selection. Ind Crop Prod 80:70–76CrossRefGoogle Scholar
  47. Popluechai S, Breviario D, Mulpuri S et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. Available from Nature Precedings.
  48. Prabakaran AJ, Sujatha M (1999) Jatropha tanjorensis Ellis & Saroja, a natural interspecific hybrid occurring in Tamil Nadu, India. Genet Resour Crop Evol 46:213–218. CrossRefGoogle Scholar
  49. Qiu C, Sangha JS, Song F et al (2010) Production of marker-free transgenic rice expressing tissue-specific Bt gene. Plant Cell Rep 29:1097–1107. CrossRefPubMedGoogle Scholar
  50. Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398Google Scholar
  51. Rupert EA, Dehgan B, Webster GL (1970) Experimental studies of relationships in the genus Jatropha L. J. curcas x J. integerrima. Bull Torrey Bot Club 99:321–325CrossRefGoogle Scholar
  52. Sato S, Hirakawa H, Isobe S et al (2010) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76 dsq030 [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci U S A 90:10623–10627CrossRefGoogle Scholar
  54. Shen J, Pinyopusarerk K, Bush D et al (2012) AFLP-based molecular characterization of 63 populations of Jatropha curcas L. grown in provenance trials in China and Vietnam. Biomass Bioenergy 37:265–274. CrossRefGoogle Scholar
  55. Sinha P, Dwivedi N, Negi MS et al (2014) Genetic variability among Jatropha species as revealed by amplified fragment length polymorphism (AFLP) markers. Indian J Biotechnol 13:496–501Google Scholar
  56. Sinha P, Md Islam A, Negi MS et al (2015a) Estimation of outcrossing rates in interspecific backcross plants of Jatropha curcas (L.) using AFLP and SSR markers. Physiol Mol Biol Plants 21:605–609. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Sinha P, Md Islam A, Negi MS et al (2015b) First identification of core accessions of Jatropha curcas from India based on molecular genetic diversity. Plant Genet Resour 14:77–80. CrossRefGoogle Scholar
  58. Smith JSC (1984) Genetic variability within US hybrid maize: multivariate analysis of isozyme data. Crop Sci 24:1041–1046CrossRefGoogle Scholar
  59. Stalker HT (1980) Utilization of wild species for crop improvement. Adv Agron 33:111–147CrossRefGoogle Scholar
  60. Subramanian KA, Singal SK, Saxena M et al (2005) Utilization of liquid biofuels in automobile diesel engines: an Indian perspective. Biomass Bioenergy 29:65–72CrossRefGoogle Scholar
  61. Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha hybrids through interspecific hybridization. Genet Resour Crop Evol 50:75–82CrossRefGoogle Scholar
  62. Sun Q-B, Li L-F, Li Y et al (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871. CrossRefGoogle Scholar
  63. Sun F, Liu P, Ye J et al (2012) An approach for Jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5:42 1754-6834-5-42 [pii]. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tatikonda L, Wani SP, Kannan S et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513CrossRefGoogle Scholar
  65. Thompson JA, Nelson RL, Vodkin LO (1998) Identification of diverse soybean germplasm using RAPD markers. Crop Sci 38:1348–1355CrossRefGoogle Scholar
  66. Trebbi D, Papazoglou EG, Saadaoui E et al (2015) Assessment of genetic diversity in different accessions of Jatropha curcas. Ind Crop Prod 75:35–39. CrossRefGoogle Scholar
  67. Wang CM, Liu P, Yi C et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6:e23632CrossRefGoogle Scholar
  68. Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821. CrossRefPubMedGoogle Scholar
  69. Xia Z, Zou M, Zhang S et al (2014) AFSM sequencing approach: a simple and rapid method for genome-wide SNP and methylation site discovery and genetic mapping. Sci Rep 4:7300. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Xia Z, Zhang S, Wen M et al (2018) Construction of an ultrahigh-density genetic linkage map for Jatropha curcas L. and identification of QTL for fruit yield. Biotechnol Biofuels 11:3. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yang C, Fang Z, Li B et al (2010) Breeding of high-oil Jatropha curcas L. for biodiesel production. Chin J Biotechnol 26:1514–1525Google Scholar
  72. Yi G, Lee JM, Lee S et al (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130CrossRefGoogle Scholar
  73. Zhang Z, Guo X, Liu B et al (2011) Genetic diversity and genetic relationships of Jatropha curcas between China and Southeast Asian revealed by amplified fragment length polymorphisms. Afr J Biotechnol 10:2825–2832CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiotechnologyTERI School of Advanced StudiesNew DelhiIndia

Personalised recommendations