Advertisement

Transcriptomic View of Jatropha curcas L. Inflorescence

  • Nisha GovenderEmail author
  • Zeti-Azura Mohamed-Hussein
  • Ratnam Wickneswari
Chapter

Abstract

The inflorescence is an important component for the reproductive success in plants. At the onset of vegetative to reproductive tissue transition, a series of biological processes which affect the yield component of a plant take place within the inflorescence: shoot apical meristem to inflorescence meristem transition, floral commitment and flowering (inflorescence meristem to floral meristem), floral sex differentiation, male-to-female flower ratio, seed setting, and fruiting. Jatropha curcas or the physic nut is gaining recognition worldwide for its lucrative biofuel potentials; however, the present planting material offers considerable yield constraints such as poor seed yield, predominantly attributed by the unpredictable number of inflorescences and flowers. This chapter discusses the molecular aspects of J. curcas inflorescence with regard to reproductive-related organs/tissues such as the shoot, floral bud, and male and female flowers. Transcriptome and genomic analyses of J. curcas inflorescence and its related components have been identified and discussed to benefit plant breeding programs targeted for J. curcas yield enhancement strategies. Bioinformatics approaches such as the transcriptome data based on the differentially expressed gene analysis and gene co-expression network modelling are also addressed for the selection of candidate genes of interest in breeding programs. In addition, a complete view of the molecular basis that governs J. curcas inflorescence development and specifications is described.

Keywords

Inflorescence Jatropha curcas RNA sequencing Transcriptome 

References

  1. Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092.  https://doi.org/10.1093/jxb/ern301 CrossRefPubMedGoogle Scholar
  2. Aichinger E, Kornet N, Friedrich T et al (2012) Plant stem cell niches. Annu Rev Plant Biol 63:615–636CrossRefGoogle Scholar
  3. Akbar E, Yaakob J, Kamarudin SK et al (2009) Characteristics and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 29:396–403Google Scholar
  4. Alburquerque N, García-Almodóvara RC, Valverdeb JM et al (2017) Characterization of Jatropha curcas accessions based in plant growth traits and oil quality. Ind Crop Prod 109:693–698CrossRefGoogle Scholar
  5. Araki T (2001) Transition from vegetative to reproductive phase. Curr Opin Plant Biol 4:63–68.  https://doi.org/10.1016/s1369-5266(00)00137-0 CrossRefPubMedGoogle Scholar
  6. Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  7. Bhattacharya A, Datta K, Kumar Datta S (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460CrossRefGoogle Scholar
  8. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449CrossRefGoogle Scholar
  9. Bressan EA, Sebbenn AM, Ferreira RR et al (2013) Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis. Tree Genet Genomes 9:1089–1097CrossRefGoogle Scholar
  10. Carels N (2009) Jatropha curcas. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop (vol 2): genetic improvement and biotechnology. Springer, New York, pp 119–136.  https://doi.org/10.1007/978-1-4614-4915-7_19 CrossRefGoogle Scholar
  11. Carvalho CR, Clarindo WR, Praca MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  12. Chang-Wei L, Kun L, You C et al (2007) Floral display and breeding system of Jatropha curcas L. For Stud China 9(2):114–119CrossRefGoogle Scholar
  13. Che-Mat NH, Bhuiyan MAR, Senan S et al (2015) Selection of high yielding Jatropha curcas L. accessions for elite hybrid seed production. Sains Malaysiana 44(11):1567–1572Google Scholar
  14. Chen MS, Pan BZ, Wang GJ et al (2014) Analysis of the transcriptional responses in inflorescence buds of Jatropha curcas exposed to cytokinin treatment. BMC Plant Biol 14:318.  https://doi.org/10.1186/s12870-014-0318-z CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen M, Pan BZ, Fu Q et al (2017) Comparative transcriptome analysis between gynoecious and monoecious plants identifies regulatory networks controlling sex determination in Jatropha curcas. Front Plant Sci 7:1953.  https://doi.org/10.3389/fpls.2016.01953 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Choo MY, Yung CL, Ma AN (2012) Chap. 17: Oil palm. In: Kole C, Joshi CP, Shonnard DR (eds) Handbook of bioenergy crop plants. CRC Press, Boca Raton, pp 433–451.  https://doi.org/10.1201/b11711-20 CrossRefGoogle Scholar
  17. Copeland LO, McDonald M (2001) Principles of seed science and technology. Kluwer Academic Publisher, BostonCrossRefGoogle Scholar
  18. Costa GG, Cardoso KC, Del Bem LE et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462–471.  https://doi.org/10.1186/1471-2164-11-462 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Costa-Silva J, Domingues D, Lopes FM (2017) RNA-seq differential expression analysis: an extended review and a software tool. PLoS One 12(12):e0190152CrossRefGoogle Scholar
  20. Daviere J, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151CrossRefGoogle Scholar
  21. Di Y, Schafer DW, Cumbie JS et al (2011) The NBP negative binomial model for assessing differential gene expression from RNA-seq. Stat Appl Genet Mol Biol 10:24CrossRefGoogle Scholar
  22. Divakara BN, Upadhyaya HD, Wani SP et al (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  23. Du J, Wang S, He C et al (2017) Identification of regulatory networks and hub genes controlling soybean seed set and size using RNA sequencing analysis. J Exp Bot 68:1955–1972PubMedPubMedCentralGoogle Scholar
  24. Fairless D (2007) Biofuel: the little shrub that could-maybe. Nature 449(7163):652–655CrossRefGoogle Scholar
  25. Finotello F, Di Camillo B (2014) Measuring differential gene expression with RNA-seq: challenges and strategies for data analysis. Brief Funct Genomic 14:130–142CrossRefGoogle Scholar
  26. Foidl N, Foidl G, Sanchez M et al (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82CrossRefGoogle Scholar
  27. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550CrossRefGoogle Scholar
  28. Fresnedo-Ramírez J (2013) The floral biology of Jatropha curcas L.-a review. Trop Plant Biol 6:1–15.  https://doi.org/10.1007/s12042-012-9113-x CrossRefGoogle Scholar
  29. Fröschle M, Horn H, Spring O (2017) Effects of the cytokinins 6-benzyladenine and forchlorfenuron on fruit-, seed- and yield parameters according to developmental stages of flowers of the biofuel plant Jatropha curcas L. (Euphorbiaceae). Plant Growth Regul 81:293–303.  https://doi.org/10.1007/s10725-016-0206-7 CrossRefGoogle Scholar
  30. Gangwar M, Sood H, Chauhan RS (2016) Genomics and relative expression analysis identifies key genes associated with high female to male flower ratio in Jatropha curcas L. Mol Biol Rep 43(4):305–322CrossRefGoogle Scholar
  31. Ghosh A, Chikara J, Chaudhary DR et al (2010) Paclobutrazol arrests vegetative growth and unveils unexpressed yield potential of Jatropha curcas. J Plant Growth Regul 29:307–315.  https://doi.org/10.1007/s00344-010-9137-0 CrossRefGoogle Scholar
  32. Govender N, Senan S, Mohamed-Hussein ZA et al (2017) Transcriptome analysis of reproductive tissue differentiation in Jatropha curcas L. Genomics Data 13:11–14.  https://doi.org/10.1016/j.gdata.2017.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Govender N, Senan S, Mohamed-Hussein ZA et al (2018) A gene co-expression network model identifies yield-related vicinity networks in Jatropha curcas shoot system. Sci Rep 8:9211.  https://doi.org/10.1038/s41598-018-27493-z CrossRefPubMedPubMedCentralGoogle Scholar
  34. Guo S, Sun B, Looi LS et al (2015) Co-ordination of flower development through epigenetic regulation in two model species: rice and Arabidopsis. Plant Cell Physiol 56:830–842CrossRefGoogle Scholar
  35. Hegde DM (2003) Tree oilseeds for effective utilization of wastelands. In: Compendium of lecture notes of Winter School on Wasteland development in rainfed areas. Central Research Institute for Dryland Agriculture, Hyderabad. pp 111–119Google Scholar
  36. Heidstra R, Sabatini S (2014) Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol 15:301–312CrossRefGoogle Scholar
  37. Heller J (1996) Physic nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops 1. International Plant Genetic Resources Institute, RomeGoogle Scholar
  38. Hirakawa H, Tsuchimoto S, Sakai H et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 29:123–130.  https://doi.org/10.5511/plantbiotechnology.12.0515a CrossRefGoogle Scholar
  39. Hollender CA, Kang C, Darwish O et al (2014) Floral transcriptomes in woodland strawberry uncover developing receptacle and anther gene networks. Plant Physiol 165:1062–1075CrossRefGoogle Scholar
  40. Hui W, Yang Y, Wu G et al (2017) Transcriptome profile analysis reveals the regulation mechanism of floral sex differentiation in Jatropha curcas L. Sci Rep 7:16421.  https://doi.org/10.1038/s41598-017-16545-5 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jiang H, Wu P, Zhang S et al (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7:e36522.  https://doi.org/10.1371/journal.pone.0036522 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jiménez-Gómez JM (2014) Network types and their application in natural variation studies in plants. Curr Opin Plant Biol 18:80–86.  https://doi.org/10.1016/j.pbi.2014.02.010 CrossRefPubMedGoogle Scholar
  43. Joachim H (1996) Physic nut. Jatropha curcas L. Gatersleben. Institute of Plant Genetics and Crop Plant Research/International Plant Genetic Resources Institute, RomeGoogle Scholar
  44. Johnson TS, Eswaran N, Sujatha M (2011) Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep 30:1573–1591CrossRefGoogle Scholar
  45. Juntawong P, Sirikhachornkit A, Pimjan R et al (2014) Elucidation of the molecular responses to waterlogging in Jatropha roots by transcriptome profiling. Front Plant Sci 5:658.  https://doi.org/10.3389/fpls.2014.00658 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kaushik N, Kumar K, Kumar S et al (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502CrossRefGoogle Scholar
  47. Khalil H, Aprilia N, Bhat A et al (2013) A Jatropha biomass as renewable materials for biocomposites and its applications. Renew Sust Energ Rev 22:667–685CrossRefGoogle Scholar
  48. King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenergy Res 4:211–221.  https://doi.org/10.1007/s12155-011-9114-x CrossRefGoogle Scholar
  49. Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698CrossRefGoogle Scholar
  50. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10.  https://doi.org/10.1016/j.indcrop.2008.01.001 CrossRefGoogle Scholar
  51. Lama AD, Klemola T, Saloniemi I et al (2018) Factors affecting genetic and seed yield variability of Jatropha curcas (L.) across the globe: a review. Energ Sust Dev 42:170–182.  https://doi.org/10.1016/j.esd.2017.09.002 CrossRefGoogle Scholar
  52. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 9:559CrossRefGoogle Scholar
  53. Luo CW, Li K, Chen Y et al (2007) Floral display and breeding system of Jatropha curcas L. For Stud China 9:114–119CrossRefGoogle Scholar
  54. Machida Y, Fukaki H, Araki T (2013) Plant meristems and organogenesis: the new era of plant developmental research. Plant Cell Physiol 54:295–301CrossRefGoogle Scholar
  55. Maes WH, Trabucco A, Achten WMU et al (2009) Climatic growing conditions of Jatropha curcas L. Biomass Bioenergy 33:1481–1485CrossRefGoogle Scholar
  56. Makkar HPS, Becker K, Sporen F et al (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas L. J Agric Food Chem 45:3152–3157CrossRefGoogle Scholar
  57. Makwana V, Shukla P, Robin P (2010) GA application induces alteration in sex ratio and cell death in Jatropha curcas. Plant Growth Regul 61:121–125CrossRefGoogle Scholar
  58. Mateous JL, Madrigal P, Tsuda K et al (2015) Combinatorial activities of short vegetative phase and flowering locus C define distinct modes of flowering regulation in Arabidopsis. Genome Biol 16:31CrossRefGoogle Scholar
  59. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefGoogle Scholar
  60. Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12:191.  https://doi.org/10.1186/1471-2164-12-191 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Natarajan P, Kanagasabapathy D, Gunadayalan G et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606.  https://doi.org/10.1186/1471-2164-11-606 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nietsche S, Vendrame WA, Crane JH et al (2014) Assessment of reproductive characteristics of Jatropha curcas L. in south Florida. GCB Bioenergy 6:351–359.  https://doi.org/10.1111/gcbb.12051 CrossRefGoogle Scholar
  63. Noor-Alam CN, Thohirah LA, Abdullah NAP (2011) Flowering and fruit set under Malaysian climate of Jatropha curcas L. Am J Agric Biol Sci 6(1):142–147CrossRefGoogle Scholar
  64. Noor-Alam CN, Thohirah LA, Abdullah NAP (2012) Floral biology, flowering behaviour and fruit set development of Jatropha curcas L. in Malaysia. Pertanika J Trop Agric Sci 35:725–736Google Scholar
  65. Ong H, Mahlia T, Masjuki H et al (2011) Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: a review. Renew Sust Energ Rev 15(8):3501–3515CrossRefGoogle Scholar
  66. Pan BZ, Xu ZF (2011) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174.  https://doi.org/10.1007/s00344-010-9179-3 CrossRefGoogle Scholar
  67. Pan BZ, Chen MS, Ni J et al (2014) Transcriptome of the inflorescence meristems of the biofuel plant Jatropha curcas treated with cytokinin. BMC Genomics 15:974.  https://doi.org/10.1186/1471-2164-15-974
  68. Pan B, Luo Y, Song L et al (2016) Thidiazuron increases fruit number in the biofuel plant Jatropha curcas by promoting pistil development. Ind Crop Prod 81:202–210CrossRefGoogle Scholar
  69. Pandey VC, Singh K, Singh JS et al (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sust Energ Rev 16:2870–2883.  https://doi.org/10.1016/j.rser.2012.02.004 CrossRefGoogle Scholar
  70. Petereit J, Smith S, Jr FCH et al (2016) A petal: co-expression network modelling in R. BMC Syst Biol 10:51.  https://doi.org/10.1186/s12918-016-0298-8 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Qi Z, Zhang Z, Wang Z et al (2018) Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Plant Cell Environ 1–9.  https://doi.org/10.1111/pce.13175
  72. Rao GR, Korwar GR, Shanker AK et al (2008a) Genetic associations, variability and diversity in seed characters, growth, reproductive phenology and yield in Jatropha curcas (L.) accessions. Trees 22:697–709CrossRefGoogle Scholar
  73. Rao YVH, Oleti RS, Hariharan VS et al (2008b) Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine. Int J Agric Biol Eng 1:32–38Google Scholar
  74. Raorane M, Popluechai S, Angharad MR et al (2010) Biology and genetic improvement of Jatropha curcas L.: a review. Appl Energy 87:732–742CrossRefGoogle Scholar
  75. Rapaport F, Khanin R, Liang Y et al (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95CrossRefGoogle Scholar
  76. Rincón-Rabanales M, Vargas-Lopez LI, Adriano-Anaya L et al (2016) Reproductive biology of the biofuel plant Jatropha curcas in its center of origin. Peer J 4:1819–1831CrossRefGoogle Scholar
  77. Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76.  https://doi.org/10.1093/dnares/dsq030 CrossRefPubMedGoogle Scholar
  78. Schaefer RJ, Michno JM, Myers CL (2016) Unraveling gene function in agricultural species using gene co-expression networks. BBA-Gene Regul Mech 1860:53–63.  https://doi.org/10.1016/j.bbagrm.2016.07.016 CrossRefGoogle Scholar
  79. Silva AT, Ribone PA, Chan RL et al (2016) A predictive co-expression network identifies novel genes controlling the seed-to-seedling phase transition in Arabidopsis thaliana. Plant Physiol 170:2218–2231.  https://doi.org/10.1104/pp.15.01704 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Solomon Raju AJ, Ezradanam V (2002) Pollination ecology and fruiting behaviour in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398Google Scholar
  81. Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinforma 14:91CrossRefGoogle Scholar
  82. Sun B, Ito T (2015) Regulation of floral stem cell termination. Front Plant Sci 6:17PubMedPubMedCentralGoogle Scholar
  83. Tatikonda L, Wani SP, Kannan S et al (2009) AFLP-based molecular characterization of an elite germplasm collection on Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513.  https://doi.org/10.1016/j.plantsci.2009.01.006 CrossRefPubMedGoogle Scholar
  84. Teo ZW, Song S, Wang YQ et al (2014) New insights into the regulation of inflorescence architecture. Trends Plant Sci 19(3):158–165CrossRefGoogle Scholar
  85. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515CrossRefGoogle Scholar
  86. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32:1633–1651.  https://doi.org/10.1111/j.1365-3040.2009.02040.x CrossRefPubMedGoogle Scholar
  87. Wang H, Zou Z, Wang S et al (2013) Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L. PLoS One 8(12):e82817.  https://doi.org/10.1371/journal.pone.0082817 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wani SP, Sreedevi TK, Reddy BVS (2006) Biofuels: status, issues and approaches for harnessing the potential. Presentation made at CII Godrej Center, Hyderabad, pp 29–30Google Scholar
  89. Wellmer F, Graciet E, Riechmann JL (2013) Specifications of floral organs in Arabidopsis. J Exp Bot 65:1–9CrossRefGoogle Scholar
  90. Wijaya A, Susantidiana HMU, Hawalid H (2009) Flower characteristics and the yield of Jatropha (Jatropha curcas L.) accessions. HAYATI J Biosci 16:123–126CrossRefGoogle Scholar
  91. Wolfe CJ, Kohane IS, Butte AJ (2005) Systematic survey reveals general applicability of “guilt-by-association” within gene co-expression networks. BMC Bioinform 6:227.  https://doi.org/10.1186/1471-2105-6-227 CrossRefGoogle Scholar
  92. Wu J, Liu Y, Tang L et al (2011) A study on structural features in early flower development of Jatropha curcas L. and the classification of its inflorescences. Afr J Agric Res 6:275–284Google Scholar
  93. Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821.  https://doi.org/10.1111/tpj.12761 CrossRefPubMedGoogle Scholar
  94. Xu G, Luo R, Yao Y (2013) Paclobutrazol improved the reproductive growth and the quality of seed oil of Jatropha curcas. J Plant Growth Regul 32:875–883CrossRefGoogle Scholar
  95. Xu G, Huang J, Yang Y, al YY (2016) Transcriptome analysis of flower sex differentiation in Jatropha curcas L. using RNA sequencing. PLoS One 11(2):e0145613.  https://doi.org/10.1371/journal.pone.0145613 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Yamaguchi N, Huang J, Xu Y (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nat Commun 8:1125.  https://doi.org/10.1038/s41467-017-01252-6 CrossRefPubMedPubMedCentralGoogle Scholar
  97. Yang X, Ye CY, Bisaria A et al (2011) Identification of candidate genes in Arabidopsis and Populus cell wall biosynthesis using text-mining, co-expression network analysis and comparative genomics. Plant Sci 181:675–687.  https://doi.org/10.1016/j.plantsci.2011.01.02 CrossRefPubMedGoogle Scholar
  98. Ye J, Hong Y, Qu J et al (2013) Improvement of J. curcas oil by genetic transformation (Ch. 29). In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop volume 2: genetic improvement and biotechnology. Springer, New York, pp 547–562Google Scholar
  99. Zhang Y, Wang Y, Jiang L et al (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin Shanghai 39:787–794.  https://doi.org/10.1111/j.1745-7270.2007.00334.x CrossRefPubMedGoogle Scholar
  100. Zhang L, Zhang C, Wu P et al (2014) Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress. PLoS One 9:e97878.  https://doi.org/10.1371/journal.pone.009787 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nisha Govender
    • 1
    • 2
    Email author
  • Zeti-Azura Mohamed-Hussein
    • 2
    • 3
  • Ratnam Wickneswari
    • 1
  1. 1.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institute of Systems Biology (INBIOSIS)Universiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.School of Biosciences and Biotechnology, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations