Genetic Transformation and Transgenics of Jatropha curcas, a Biofuel Plant



Jatropha curcas is considered as a potential biodiesel feedstock plant. To date, however, it remains a semi-wild species. Transgenic modification is one of the most effective and rapid approaches to accelerate its breeding process. Various methods of genetic transformation, such as Agrobacterium- and particle bombardment-mediated transformation, have been attempted and improved over the past 10 years. This chapter presents a comprehensive account of the influence of several important factors on the genetic transformation of Jatropha. It also introduces studies on transgenic Jatropha involving functional genes for novel agronomic traits, including plant morphology, flowering time, seed development, seed oil content, oil composition and yield, as well as biotic and abiotic stress tolerance. Moreover, improvements in genetic transformation and the completion of genomic sequencing analysis give Jatropha the potential to become a new model species for studies on gene function and genetic improvement in woody plants.


Explants Jatropha curcas Selective agent Transformation efficiency Transgenic plant 



This work was supported by the Natural Science Foundation of China (31300568 and 31771605), the Plant Germplasm Innovation Program of the Chinese Academy of Sciences (CAS, kfj-brsn-2018-6-008), and the CAS 135 program (2017XTBG-T02). The authors gratefully acknowledge the Central Laboratory of the Xishuangbanna Tropical Botanical Garden for providing research facilities.


  1. Agarwal D, Agarwal AK (2007) Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl Therm Eng 27(13):2314–2323.
  2. Bhatia P, Ashwath N, Midmore DJ (2005) Effects of genotype, explant orientation, and wounding on shoot regeneration in tomato. In Vitro Cell Dev Biol Plant 41(4):457–464.
  3. Cai L, Zhang L, Fu Q et al (2018) Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas. Peer J 6:e4812.
  4. Cartagena J (2017) Towards varietal improvement of Jatropha by genetic transformation. In: Tsuchimoto S (ed) The Jatropha genome. Springer, Cham, pp 177–190.
  5. Chen JN, Liu BB, Lu MZ et al (2015) Improved genetic transformation of jatropha curcas using phosphomannose isomerase as biosafe selectable marker. J Biobased Mater Biol 9(1):9–15.
  6. Chikara J, Prakash AR, Mastan SG et al (2013) Genetic improvement in Jatropha curcas through selection and breeding. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop, Genetic Improvement and Biotechnology, vol 2. Springer, New York, pp 119–133.
  7. Fairless D (2007) Biofuel: the little shrub that could – maybe. Nature 449(7163):652–655
  8. Fu QT, Li CQ, Tang MY et al (2015) An efficient protocol for Agrobacterium-mediated transformation of the biofuel plant Jatropha curcas by optimizing kanamycin concentration and duration of delayed selection. Plant Biotechnol Rep 9(6):405–416.
  9. Gu K, Mao H, Yin Z (2014) Production of marker-free transgenic Jatropha curcas expressing hybrid Bacillus thuringiensis δ-endotoxin Cry1Ab/1Ac for resistance to larvae of tortrix moth (Archips micaceanus). Biotechnol Biofuels 7(1):68.
  10. Gu K, Tian D, Mao H et al (2015) Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing. BMC Plant Biol 15(1):242.
  11. Guo HS, Fei JF, Xie Q et al (2003) A chemical-regulated inducible RNAi system in plants. Plant J 34(3):383–392.
  12. Herr J, Carlson J (2013) Traditional breeding, genomics-assisted breeding, and biotechnological modification of forest trees and short rotation woody crops. In: Jacobson M, Ciolkosz D (eds) Wood-based energy in the northern forests. Springer, New York, pp 79–99. CrossRefGoogle Scholar
  13. Hu Y-X, Tao Y-B, Xu Z-F (2017) Overexpression of Jatropha Gibberellin 2-oxidase 6 (JcGA2ox6) induces dwarfism and smaller leaves, flowers and fruits in Arabidopsis and Jatropha. Front Plant Sci 8:2103.
  14. Jaganath B, Subramanyam K, Mayavan S et al (2014) An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. Protoplasma 251(3):591–601.
  15. Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crop Prod 33(1):67–77.
  16. Joshi M, Jha A, Mishra A et al (2013) Developing transgenic Jatropha using the SbNHX1 gene from an extreme halophyte for cultivation in saline wasteland. PLoS One 8(8):e71136.
  17. Juan JC, Kartika DA, Wu TY et al (2011) Biodiesel production from jatropha oil by catalytic and non-catalytic approaches: an overview. Bioresour Technol 102(2):452–460Google Scholar
  18. Kajikawa M, Morikawa K, Inoue M et al (2012) Establishment of bispyribac selection protocols for Agrobacterium tumefaciens- and Agrobacterium rhizogenes-mediated transformation of the oilseed plant Jatropha curcas L. Plant Biotechnol 29(2):145–153.
  19. Kandpal JB, Madan M (1995) Jatropha curcas – a renewable source of energy for meeting future energy needs. Renew Energy 6(2):159–160.
  20. Khemkladngoen N, Cartagena JA, Fukui K (2011) Physical wounding-assisted Agrobacterium-mediated transformation of juvenile cotyledons of a biodiesel-producing plant, Jatropha curcas L. Plant Biotechnol Rep 5(3):235–243Google Scholar
  21. Khurana-Kaul V, Kachhwaha S, Kothari S (2010) Direct shoot regeneration from leaf explants of Jatropha curcas in response to thidiazuron and high copper contents in the medium. Biol Plant 54(2):369–372Google Scholar
  22. Kim MJ, Yang SW, Mao H-Z et al (2014) Gene silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol Biofuels 7(1):36.
  23. Kumar N, Reddy M (2010) Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann Appl Biol 156(3):367–375Google Scholar
  24. Kumar N, Vijay Anand K, Pamidimarri D et al (2010) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crop Prod 32(1):41–47Google Scholar
  25. Kumar N, Reddy MP, Sujatha M (2013) Genetic transformation of Jatropha curcas: current status and future prospects. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop, Genetic improvement and biotechnology, vol 2. Springer, New York, pp 535–546.
  26. Kumar N, Singh AS, Kumari S et al (2015) Biotechnological approaches for the genetic improvement of Jatropha curcas L.: a biodiesel plant. Ind Crop Prod 76:817–828.
  27. Li HQ, Sautter C, Potrykus I et al (1996) Genetic transformation of cassava (Manihot esculenta Crantz). Nat Biotechnol 14(6):736–740Google Scholar
  28. Li MR, Li HQ, Wu GJ (2006) Study on factors influencing Agrobacterium-mediated transformation of Jatropha curcas. J Mol Cell Biol 39(1):83–89Google Scholar
  29. Li MR, Li HQ, Jiang HW et al (2008) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult 92(2):173–181.
  30. Li C, Luo L, Fu Q et al (2014) Isolation and functional characterization of JcFT, a FLOWERING LOCUS T (FT) homologous gene from the biofuel plant Jatropha curcas. BMC Plant Biol 14(1):125.
  31. Li CH, Ng AL, Xie LF et al (2016) Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep 35(1):103–114.
  32. Li C, Fu Q, Niu L et al (2017) Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas. Sci Rep 7:43090.
  33. Liu L, Zhu Y, Shen LS et al (2013) Emerging insights into florigen transport. Curr Opin Plant Biol 16(5):607–613.
  34. Liu Y, Liu GX, Yang YL et al (2017) Establishment of an efficient plant regeneration culture protocol and achievement of successful genetic transformation in Jatropha curcas L. Acta Biol Hung 68(4):428–442.
  35. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8(10):1172–1182.
  36. Maghuly F, Laimer M (2017) Forward and reverse genetics for the improvement of Jatropha. In: Tsuchimoto S (ed) The Jatropha genome. Springer, Cham, pp 131–148.
  37. Makkar HP, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111(8):773–787Google Scholar
  38. Mao HZ, Ye J, Chua NH (2013) Genetic transformation of Jatropha curcas. U.S. Patent No. 8,609,418, 17 Dec. 2013Google Scholar
  39. Maravi DK, Kumar S, Sharma PK et al (2016) Ectopic expression of AtDGAT1, encoding diacylglycerol O-acyltransferase exclusively committed to TAG biosynthesis, enhances oil accumulation in seeds and leaves of Jatropha. Biotechnol Biofuels 9:226.
  40. Mazumdar P, Basu A, Paul A et al (2010) Age and orientation of the cotyledonary leaf explants determine the efficiency of de novo plant regeneration and Agrobacterium tumefaciens-mediated transformation in Jatropha curcas L. S Afr J Bot 76(2):337–344.
  41. Miguel CM, Oliveira MM (1999) Transgenic almond (Prunus dulcis Mill.) plants obtained by Agrobacterium-mediated transformation of leaf explants. Plant Cell Rep 18(5):387–393Google Scholar
  42. Misra P, Toppo DD, Mishra MK et al (2012) Agrobacterium tumefaciens-mediated transformation protocol of Jatropha curcas L. using leaf and hypocotyl segments. J Plant Biochem Biotechnol 21(1):128–133Google Scholar
  43. Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057.
  44. Nanasato Y, Kido M, Kato A et al (2015) Efficient genetic transformation of Jatropha curcas L. by means of vacuum infiltration combined with filter-paper wicks. In Vitro Cell Dev Plant 51(4):399–406.
  45. Newell CA (2000) Plant transformation technology. Mol Biotechnol 16(1):53–65Google Scholar
  46. Pan JL, Fu QT, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9(39):6477–6481Google Scholar
  47. Patade VY, Khatri D, Kumar K et al (2014) RNAi mediated curcin precursor gene silencing in Jatropha (Jatropha curcas L.). Mol Biol Rep 41(7):4305–4312.
  48. Purkayastha J, Sugla T, Paul A et al (2010) Efficient in vitro plant regeneration from shoot apices and gene transfer by particle bombardment in Jatropha curcas. Biol Plant 54(1):13–20.
  49. Qu J, Mao HZ, Chen W et al (2012) Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid. Biotechnol Biofuels 5(1):10.
  50. Que Q, Elumalai S, Li X et al (2014) Maize transformation technology development for commercial event generation. Front Plant Sci 5:379.
  51. Ramesh SA, Kaiser BN, Franks T et al (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25(8):821–828.
  52. Rosado TB, Laviola BG, Faria DA et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50(6):2372–2382.
  53. Sanderson K (2009) Wonder weed plans fail to flourish. Nature 461(7262):328–329.
  54. Sharma S, Kumar N, Reddy MP (2011) Regeneration in Jatropha curcas: factors affecting the efficiency of in vitro regeneration. Ind Crop Prod 34(1):943–951Google Scholar
  55. Singh A, Reddy MP, Chikara J et al (2010) A simple regeneration protocol from stem explants of Jatropha curcas – a biodiesel plant. Ind Crop Prod 31(2):209–213Google Scholar
  56. Singh K, Verma SK, Patra DD et al (2014) Jatropha curcas: a ten year story from hope to despair. Renew Sust Energ Rev 35:356–360.
  57. Sujatha M, Mukta N (1996) Morphogenesis and plant regeneration from tissue cultures of Jatropha curcas. Plant Cell Tissue Organ Cult 44(2):135–141Google Scholar
  58. Sujatha M, Nithianantham S, Reddy MP (2013) Plant regeneration and genetic transformation in Jatropha. In: Jain SM, Dutta Gupta S (eds) Biotechnology of neglected and underutilized crops. Springer, Netherlands, pp 319–342.
  59. Sun QB, Li LF, Li Y et al (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48(5):1865–1871Google Scholar
  60. Sun Y, Wang C, Wang N et al (2017) Manipulation of auxin response factor 19 affects seed size in the woody perennial Jatropha curcas. Sci Rep 7:40844.
  61. Tang M, Tao YB, Fu Q et al (2016a) An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development. Sci Rep 6:37306.
  62. Tang M, Tao YB, Xu ZF (2016b) Ectopic expression of Jatropha curcas APETALA1 (JcAP1) caused early flowering in Arabidopsis, but not in Jatropha. Peer J 4:e1969.
  63. Tapanes NCO, Aranda DAG, Carneiro JWD et al (2008) Transesterification of Jatropha curcas oil glycerides: theoretical and experimental studies of biodiesel reaction. Fuel 87(10–11):2286–2295.
  64. Toppo DD, Singh G, Purshottam D et al (2012) Improved in vitro rooting and acclimatization of Jatropha curcas plantlets. Biomass Bioenergy 44:42–46Google Scholar
  65. Tsuchimoto S, Cartagena J, Khemkladngoen N et al (2012) Development of transgenic plants in jatropha with drought tolerance. Plant Biotechnol 29(2):137–143.
  66. Visarada K, Meena K, Aruna C et al (2009) Transgenic breeding: perspectives and prospects. Crop Sci 49(5):1555–1563Google Scholar
  67. Yao JL, Cohen D, Atkinson R et al (1995) Regeneration of transgenic plants from the commercial apple cultivar Royal Gala. Plant Cell Rep 14(7):407–412Google Scholar
  68. Ye J, Geng Y, Zhang B et al (2014a) The Jatropha FT ortholog is a systemic signal regulating growth and flowering time. Biotechnol Biofuels 7(1):91.
  69. Ye J, Qu J, Mao HZ et al (2014b) Engineering geminivirus resistance in Jatropha curcas. Biotechnol Biofuels 7(1):149.
  70. Zong H, Wang SH, Ouyang C et al (2010) Agrobacterium-mediated transformation of Jatropha curcas young leaf explants with lateral shoot-inducing factor (LIF). Int J Agric Biol 12(6):891–896Google Scholar
  71. Zuo JR, Niu QW, Moller SG et al (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19(2):157–161.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Tropical Plant Resources and Sustainable UseXishuangbanna Tropical Botanical Garden, Chinese Academy of SciencesMenglaChina

Personalised recommendations