Advertisement

Prebreeding and Genetic Enhancement in Jatropha Through Interspecific Hybridization

  • Kularb Laosatit
  • Shinji Kikuchi
  • Narathid Muakrong
  • Peerasak Srinives
Chapter

Abstract

Although scientists consider jatropha as a potential energy crop, not much achievement has been made on its genetic improvement mainly due to its low genetic variation. Attempts have been made to cross J. curcas with the other Jatropha species to enhance its variation. Although there are roughly 175 Jatropha spp. known, less than 10 species were reported to set fruits with J. curcas. Yet all crosses were achieved only when J. curcas was used as the female plant, except with J. integerrima (peregrina) that enabled a limited number of successful reciprocal crosses. The cross J. curcas × J. integerrima is the most promising and being studied in many aspects of genetics and breeding. Cytologically, the F1 hybrids show disorder of chromosome segregation during meiosis, causing almost half of the microspores to contain irregular number (10 and 12) of chromosomes. Most F2 plants have more chromosomes of J. curcas than J. integerrima, and yet interspecific translocation was frequently found. When the progenies were further intercrossed, the resulting clones exhibited many characters not  found in the J. curcas germplasm. They were traits related to seed and oil yield, fatty acid composition, plant architecture, biomass yield and quality, and ornamental characteristics. The clones show much higher genotypic and phenotypic variation in seed yield, oil content, 100-seed weight, and canopy size as compared to J. curcas and thus serve as promising genetic resources for Jatropha improvement in the future.

Keywords

Wide crossing Genetic variability Jatropha domestication Creation of novel traits 

References

  1. Alipour A, Tsuchimoto S, Sakai H et al (2013) Structural characterization of copia-type retrotransposons leads to insights into the marker development in a biofuel crop, Jatropha curcas L. Biotechnol Biofuels 6:129–141CrossRefGoogle Scholar
  2. Amkul K, Panngam M, Tanya P et al (2016) Pollen viability and seed set of interspecific hybrids between Jatropha curcas × Jatropha integerrima. Genomics Genet 9(1):50–55Google Scholar
  3. Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  4. Brewbaker JL, Sorensson CT (1990) New tree crops from interspecific Leucaena hybrids. In: Janick J, Simon JE (eds) Advances in new crops. Timber Press, Portland, pp 283–289Google Scholar
  5. Carvalho CR, Clarindo WR, Praça MM et al (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  6. Chmátal L, Gabriel SI, Mitsainas GP et al (2014) Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol 24:2295–2300CrossRefGoogle Scholar
  7. Christine LR, Tentchev D, Prin Y et al (2009) Bradyrhizobia nodulating the Acacia mangium × A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl Environ Microbiol 75:752–759Google Scholar
  8. Dehgan B (1984) Phylogenetic significance of interspecific hybridization in Jatropha (Euphorbiaceae). Syst Bot 9:467–478CrossRefGoogle Scholar
  9. Dehgan B, Webster GL (1979) Chromosome numbers. In: Morphology and Infrageneric relationships of the genus Jatropha (Euphorbiaceae). University of California Press, Berkeley, pp 29–34Google Scholar
  10. Edrisi SA, Dubey RK, Tripathi V et al (2015) Jatropha curcas L.: a crucified plant waiting for resurgence. Renew Sustain Energ Rev 41:855–862CrossRefGoogle Scholar
  11. Feria MJ, López F, García JC et al (2011) Valorization of Leucaena leucocephala for energy and chemicals from autohydrolysis. Biomass Bioenergy 3:2224–2233CrossRefGoogle Scholar
  12. Fishman L, Saunders A (2008) Centromere-associated female meiotic drive entails male fitness costs in monkey flowers. Science 5:1559–1562CrossRefGoogle Scholar
  13. Fishman L, Willis JH (2005) A novel meiotic drive locus almost completely distorts segregation in mimulus (monkeyflower) hybrids. Genetics 169(1):347–353CrossRefGoogle Scholar
  14. Francis G, Oliver J, Sujatha M (2013) Non-toxic jatropha plants as a potential multipurpose multi-use oilseed crop. Ind Crop Prod 42:397–401CrossRefGoogle Scholar
  15. Fukuhara S, Muakrong N, Kikuchi S et al (2016) Cytological characterization of an interspecific hybrid in Jatropha and its progeny reveals preferential uniparental chromosome transmission and interspecific translocation. Breed Sci 66:838–844CrossRefGoogle Scholar
  16. Gong Z, Xue C, Zhang M et al (2013) Physical localization and DNA methylation of 45S rRNA gene loci in Jatropha curcas L. PLoS One 8(12):e84284CrossRefGoogle Scholar
  17. Gupta S, Srivastava M, Mishra GP et al (2008) Analogy of ISSR and RAPD markers for comparative analysis of genetic diversity among different Jatropha curcas genotypes. Afr J Biotech 7:4230–4243Google Scholar
  18. Johansson LKH, AlstrÖm S (2000) Field resistance to willow leaf rust Melampsora epitea in inter- and intraspecific hybrids of Salix viminalis and S. dasyclados. Eur J Plant Pathol 106:763–769CrossRefGoogle Scholar
  19. Kikuchi S, Tsujimoto H, Sassa H et al (2010) JcSat1, a novel subtelomeric repeat of Jatropha curcas L. and its use in karyotyping. Chromosom Sci 13:11–16Google Scholar
  20. Kumar RS, Parthiban KT, Hemalatha P et al (2009) Investigation on cross-compatibility barriers in the biofuel crop Jatropha curcas L. with wild Jatropha species. Crop Sci 49:1667–1674CrossRefGoogle Scholar
  21. Laosatit K, Tanya P, Muakrong N et al (2014) Development of interspecific and intergeneric hybrids among jatropha-related species and verification of the hybrids using EST-SSR markers. Plant Genet Resour C 12:58–61CrossRefGoogle Scholar
  22. Laosatit K, Muakrong N, Tanya P et al (2017) Overcoming crossing barriers between jatropha (Jatropha curcas L.) and castor bean (Ricinus communis L.). Crop Breed App Biotech 17:164–167CrossRefGoogle Scholar
  23. Liu P, Wang CM, Li L et al (2011) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132–140CrossRefGoogle Scholar
  24. Makkar HPS, Becker K, Sporer F et al (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157CrossRefGoogle Scholar
  25. Martínez HJ, Siddhuraju P, Francis G et al (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89CrossRefGoogle Scholar
  26. Miller KI, Webster GL (1962) Systematic position of Cnidoscolus and Jatropha. Brittonia 14:174–180CrossRefGoogle Scholar
  27. Muakrong N, One KT, Tanya P et al (2013) Interspecific jatropha hybrid as a new promising source of woody biomass. Plant Genet Resour 12:S17–S20CrossRefGoogle Scholar
  28. Muakrong N, Tanya P, Srinives P (2014) ‘Kamphaeng Saen 1’, ‘Kamphaeng Saen 2’, and ‘Kamphaeng Saen 3’: new ornamental Jatropha cultivars derived through an interspecific cross. Hortic Sci 49:1083–1085Google Scholar
  29. Na-ek Y, Wongkaew A, Phumichai T et al (2011) Genetic diversity of physic nut (Jatropha curcas L.) revealed by SSR markers. J Crop Sci Biotech 14:105–110CrossRefGoogle Scholar
  30. One KT, Muakrong N, Tanya P et al (2014a) Physicochemical properties of seeds and oil from an F2 population of Jatropha curcas × Jatropha integerrima. Sci Asia 40:428–435CrossRefGoogle Scholar
  31. One KT, Muakrong N, Phetcharat C et al (2014b) Inheritance of dwarfiness and erect growth habit in progenies of Jatropha curcas × Jatropha integerrima. J Am Soc Hortic Sci 139:582–586CrossRefGoogle Scholar
  32. Openshaw K (2000) A review of Jatropha curcas: an oil plant of unfulfilled promise. Biomass Bioenergy 19:1–15CrossRefGoogle Scholar
  33. Parthiban KT, Kumar RS, Thiyagarajan P et al (2009) Hybrid progenies in jatropha – a new development. Curr Sci 96:815–823Google Scholar
  34. Perry BA (1943) Chromosome number and phylogenetic relation-ships in the Euphorbiaceae. Am J Bot 30:527–543CrossRefGoogle Scholar
  35. Peter M (2002) Energy production from biomass (Part 1): overview of biomass. Bioresour Technol 83:37–46CrossRefGoogle Scholar
  36. Ranade SA, Srivastava AP, Rana TS et al (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  37. Rupert EA, Dehgan B, Webster GL (1970) Experimental studies of relationships in the genus Jatropha. I. J. curcas × integerrima. Bull Torrey Bot Club 97:321–325CrossRefGoogle Scholar
  38. Sasikala R, Paramathma M (2010) Chromosome studies in the genus Jatropha L. Electron J Plant Breed 1(4):637–642Google Scholar
  39. Sasikala R, Paramathma M, Kalaiyarasi R (2009) Pollen fertility studies in the genus Jatropha L. Electron J Plant Breed 1:82–83Google Scholar
  40. Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific Publishers, Oxford, 203 pGoogle Scholar
  41. Shabanimofrad M, Yusop MR, Saad MS et al (2011) Diversity of physic nut, Jatropha curcas in Malaysia-application of DIVA-GIS and cluster analysis. Aust J Crop Sci 5:361–368Google Scholar
  42. Singh K, Singh B, Verma SK et al (2014) Jatropha curcas: a ten year story from hope to despair. Renew Sustain Energy Rev 35:356–360CrossRefGoogle Scholar
  43. Soontornchainaksaeng P, Jenjittikul T (2003) Karyology of Jatropha (Euphorbiaceae) in Thailand. Thai For Bull 31:105–112Google Scholar
  44. Subashini G, Ibrahim SM, Paramathma M et al (2014) Studies on genetic variability parameters in backcross population of jatropha (Jatropha curcas). Int J Trop Agric 32:569–572Google Scholar
  45. Sudheer PDVN, Singh S, Mastan SG et al (2008) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefGoogle Scholar
  46. Sudheer PDVN, Mastan SG, Rahman H et al (2010) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257CrossRefGoogle Scholar
  47. Sujatha M (2006) Genetic improvement of Jatropha curcas L. possibilities and prospects. Indian J Agrofor 8:58–65Google Scholar
  48. Sujatha M, Prabakaran AJ (2003) New ornamental Jatropha hybrids through interspecific hybridization. Genet Resour Crop Evol 50:75–82CrossRefGoogle Scholar
  49. Sun QB, Li LF, Li Y et al (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1871CrossRefGoogle Scholar
  50. Sun F, Liu P, Ye J et al (2012) An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5:42–52CrossRefGoogle Scholar
  51. Sunil N, Sujatha M, Kumar V et al (2011) Correlating the phenotypic and molecular diversity in Jatropha curcas L. Biomass Bioenergy 35:1085–1096CrossRefGoogle Scholar
  52. Tanya P, Srinives P, Muakrong N (2013) Registration of ‘Kamphaeng Saen 4’, ‘Kamphaeng Saen 5’, and ‘Kamphaeng Saen 6’ as new ornamental jatropha varieties. Dept of Agriculture, Min of Agric & Coop, ThailandGoogle Scholar
  53. Vries SMG, Turok J (2001) Technical bulletin: in situ conservation of Populus nigra. International Plant Genetic Resource Institute (IPGRI), RomeGoogle Scholar
  54. Wang CM, Liu P, Yi C et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6:e23632CrossRefGoogle Scholar
  55. Witkowska M, Ohmido N, Cartagena J et al (2009) Physical mapping of ribosomal DNA genes on Jatropha curcas chromosomes by multicolor FISH. Cytologia 74(2):133–139CrossRefGoogle Scholar
  56. Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kularb Laosatit
    • 1
  • Shinji Kikuchi
    • 2
  • Narathid Muakrong
    • 3
  • Peerasak Srinives
    • 1
  1. 1.Department of Agronomy, Faculty of Agriculture at Kamphaeng SaenKasetsart UniversityNakhon PathomThailand
  2. 2.Laboratory of Genetics and Plant Breeding, Graduate School of HorticultureChiba UniversityMatsudo, ChibaJapan
  3. 3.Faculty of AgriculturePrincess of Naradhiwas UniversityNarathiwatThailand

Personalised recommendations