Advertisement

Jatropha curcas L. Latex Production, Characterization, and Biotechnological Applications

  • Luciane Madureira AlmeidaEmail author
  • Fábio Santos Matos
  • Elisa Flávia Luiz Cardoso Bailão
  • Pablo José Gonçalves
Chapter

Abstract

Latex is a fluid that flows out of some plants when injured and has been explored mainly for the rubber production and drug development. Particularly, latex obtained from Jatropha curcas L. is not used to obtain rubber but presents metabolites and bioactive compounds that possess potential medicinal applications. However, this latex was until now poorly scientifically investigated. In this chapter we will focus on its harvest, yield, chemical composition, and biotechnological applications of the J. curcas latex. Regarding the production, J. curcas latex is strongly influenced by environmental factors (water, light, nutrients, and temperature) that interfere in photosynthetic activity and endogenous conditions (fruit production and leaf senescence) determining the allocation of carbon for primary or secondary metabolisms. The main compounds found in J. curcas latex are curcain, curcacyclines A and B, and jatrophidin I, which present medicinal properties, such as wound healing, anticancer, and antioxidant. In addition to isolated molecules, the crude latex also presents antimicrobial, antiviral, antinematode, anti-inflammatory, procoagulant, and anticoagulant activities. J. curcas latex also has shown nanotechnological potential due to its capacity of reducing and capping agents and of avoiding nanoparticle aggregation. Since its use is quite recent and still little is explored, new possibilities for the development of bio-based products can arise and add more commercial value to this crop.

Keywords

Bioactivities Curcacyclines Curcain Folklore medicine Laticifers Metabolites 

References

  1. Abdelgadir HÁ, Van Staden J (2013) Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): a review. South Afr J Bot 88:204–218.  https://doi.org/10.1016/j.sajb.2013.07.021 CrossRefGoogle Scholar
  2. Almeida LM, Floriano JF, Ribeiro TP et al (2014) Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity. J Mater Sci Mater Med 25(9):2153–2162.  https://doi.org/10.1007/s10856-014-5255-8 CrossRefPubMedGoogle Scholar
  3. Almeida LM, do Prado ADL, D’Abadia P et al (2015) The state-of-art in angiogenic properties of latex from different plant species. Curr Angiogenes 4(1):10–23CrossRefGoogle Scholar
  4. Altei WF, Picchi DG, Abissi BM et al (2014) Jatrophidin I, a cyclic peptide from Brazilian Jatropha curcas L.: isolation, characterization, conformational studies and biological activity. Phytochemistry 107:91–96.  https://doi.org/10.1016/j.phytochem.2014.08.006 CrossRefPubMedGoogle Scholar
  5. Aminul Islam AKM, Yaakob Z, Anuar N et al (2012) Physiochemical properties of Jatropha curcas seed oil from different origins and candidate plus plants (CPPs). J Am Oil Chem Soc 89(2):293–300.  https://doi.org/10.1007/s11746-011-1908-7 CrossRefGoogle Scholar
  6. Asase A, Oteng-Yeboah AA, Odamtten GT et al (2005) Ethnobotanical study of some Ghanaian anti-malarial plants. J Ethnopharmacol 99:273–279CrossRefGoogle Scholar
  7. Auvin C, Baraguey C, Blond A et al (1997) Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 38(16):2845–2848CrossRefGoogle Scholar
  8. Bahadur B, Reddy SM, Goverdhan S et al (1997) Antimicrobial activity in eight species of Jatropha L. (Euphorbiaceae). J Indian Bot Soc 77:190–191Google Scholar
  9. Bailão EFLC, Pereira IR, Matos FS et al (2018) Jatropha curcas L. latex presents dual role: mutagenic and antimutagenic. J Brazilian Biol (submitted)Google Scholar
  10. Bar H, Bhui DK, Sahoo GP et al (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloid Surf A Physicochem Eng Aspects 339:134–139CrossRefGoogle Scholar
  11. Barakat IAH, Khalil WKB, Al-Himaidi AR (2016) Curcacycline A and B modulate apoptosis induced by heat stress in sheep oocytes during in vitro maturation. Small Rumin Res 136:187–196.  https://doi.org/10.1016/j.smallrumres.2016.01.020 CrossRefGoogle Scholar
  12. Beilen JB, Porier Y (2007) Establishment of new crops for the production of natural rubber. Trends Biotechnol 25:522–529CrossRefGoogle Scholar
  13. Bharti S, Wahane VD, Kumar VL (2010) Protective effect of Calotropis procera latex extracts on experimentally induced gastric ulcers in rat. J Ethnopharmacol 127:440–444CrossRefGoogle Scholar
  14. Chaudhary P, de Araújo Viana C, Ramos MV et al (2015) Antiedematogenic and antioxidant properties of high molecular weight protein sub-fraction of Calotropis procera latex in rat. J Basic Clin Pharm 6(2):69–73CrossRefGoogle Scholar
  15. Ciappina AL, Ferreira FA, Pereira IR et al (2017) Toxicity of Jatropha curcas L. latex in Allium cepa test. Biosci J 33(5):1295–1304CrossRefGoogle Scholar
  16. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  17. Debnath M, Bisen PS (2008) Jatropha curcas L, a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr Pharm Biotechnol Hilversum 9(4):288–306.  https://doi.org/10.2174/138920108785161541 CrossRefGoogle Scholar
  18. Deka P, Nath KK, Borthakur SK (2008) Ethioatrical uses of Euphorbia antiqourum L. and E. ligularia Roxb. in Assam. Indian J Tradit Knowl 7:466–488Google Scholar
  19. Devappa RK, Makkar HPS, Becker K (2010) Nutritional, biochemical and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58:6543–6555CrossRefGoogle Scholar
  20. Dewan S, Sangraula H, Kumar VL (2000) Preliminary studies on analgesic activity of latex of Calotropis procera. J Ethnopharmacol 73:307–311CrossRefGoogle Scholar
  21. Domsalla A, Melzig MF (2008) Occurrence and properties of proteases in plant latices. Planta Med 74:699–711CrossRefGoogle Scholar
  22. Duke JA, Ayensu ES (1983) Handbook of energy crops. Available from https://www.hort.purdue.edu/newcrop/duke_energy/dukeindex.html
  23. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264CrossRefGoogle Scholar
  24. Fairless D (2007) Biofuel: the little shrub that could–maybe. Nature 449:652–655.  https://doi.org/10.2038/449652a CrossRefPubMedGoogle Scholar
  25. Fernandez-Arche A, Saenz MT, Arroyo M et al (2010) Topical anti-inflammatory effect of tirucallol, a triterpene isolated from Euphorbia lactea latex. Phytomedicine 17:146–148CrossRefGoogle Scholar
  26. Ganesan S, Suresh N, Kesaven L (2004) Ethnomedicinal survey of lower Palani Hills of Tamil Nadu. Indian J Tradit Knowl 3:299–304Google Scholar
  27. Gfeller D, Grosdidier A, Wirth M et al (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32–W38.  https://doi.org/10.1093/nar/gku293 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Goel RK, Singh D, Lagunin A et al (2011) PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res 20(9):1509–1514.  https://doi.org/10.1007/s00044-010-9398-y CrossRefGoogle Scholar
  29. Guidelli EJ, Ramos AP, Zaniquelli MED et al (2011) Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim Acta A 82:140–145CrossRefGoogle Scholar
  30. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639CrossRefGoogle Scholar
  31. He W, King AJ, Khan MW et al (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple prevenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49:1183–1190CrossRefGoogle Scholar
  32. Heller J (1996) Physic-nut J. curcas L promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  33. Huan-Fang L, Jing-Ping L, Yuran-Jiang T (2006) Anatomy of laticifers in Jatropha curcas L. J Trop Subtrop Bot 14:294–300Google Scholar
  34. Hudlikar M, Joglekar S, Dhaygude M et al (2012a) Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex. Mater Lett 75:196–199CrossRefGoogle Scholar
  35. Hudlikar M, Joglekar S, Dhaygude M et al (2012b) Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach. J Nanopart Res 14:865CrossRefGoogle Scholar
  36. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402CrossRefGoogle Scholar
  37. Insanu M, Anggadiredja J, Oliver K (2012) Curcacycline A and B – new pharmacological insights to an old drug. Int J Appl Res Nat Prod 5(2):26–34Google Scholar
  38. Iwu MM (1993) Handbook of African medicinal plants. CRC Press, Boca Raton, pp 24–33Google Scholar
  39. Jain SK, Srivastava S (2005) Traditional use of some Indian plants among islanders of the Indian Ocean. Indian J Tradit Knowl 4:345–357Google Scholar
  40. Jiang L, Zhang J, Monticone RE et al (2012) Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis. Hypertension 60(5):1192–1199.  https://doi.org/10.1161/HYPERTENSIONAHA.112.196840 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Joglekar S, Kodam K, Dhaygude M et al (2011) Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Mater Lett 65:3170–3172CrossRefGoogle Scholar
  42. Kaushik N, Kumar S (2008) Jatropha curcas L. silviculture and uses, 2nd edn. Agrobios, JodhpurGoogle Scholar
  43. Keiser MJ, Roth BL, Armbruster BN et al (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206.  https://doi.org/10.1038/nbt1284 CrossRefPubMedGoogle Scholar
  44. Khimji AK, Rockey DC (2011) Endothelin and hepatic wound healing. Pharmacol Res 63(6):512–518.  https://doi.org/10.1016/j.phrs.2011.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72(13):1510–1530CrossRefGoogle Scholar
  46. Krishnamurthy KV, Venkatasubramanian P, Lalitha S (2013) Laticifers of Jatropha. In: Bahadur B et al (eds) Jatropha, challenges for a new energy crop: vol 2: genetic improvement and biotechnology. Springer, New York, pp 3–10CrossRefGoogle Scholar
  47. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L): a review. Ind Crop Prod 28:1–10CrossRefGoogle Scholar
  48. Kumar S, Bhattacharya W, Singh M et al (2017) Plant latex capped colloidal silver nanoparticles: a potent anti-biofilm and fungicidal formulation. J Mol Liq 230:705–713CrossRefGoogle Scholar
  49. Licá ICL, Soares AMDS, de Mesquita LSS et al (2018) Biological properties and pharmacological potential of plant exudates. Food Res Int 105:1039–1053.  https://doi.org/10.1016/j.foodres.2017.11.051 CrossRefPubMedGoogle Scholar
  50. Luangpipat T, Beattie IR, Chisti Y et al (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13:6439–6445CrossRefGoogle Scholar
  51. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182CrossRefGoogle Scholar
  52. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215CrossRefGoogle Scholar
  53. Malviya SN, Malakar R, Yadav M et al (2011) Estimation and characterization of protein present in seed extract of Jatropha curcas. Adv Res Pharm Biol 1(1):35–44Google Scholar
  54. Matos FS, Oliveira LR, Freitas RG et al (2012) Physiological characterization of leaf senescence of Jatropha curcas L. populations. Biomass Bioenergy 45:57–64.  https://doi.org/10.1016/j.biombioe.2012.05.012 CrossRefGoogle Scholar
  55. Matos FS, Rosa VR, Borges LFO et al (2014) Response of Jatropha curcas plants to changes in the availability of nitrogen and phosphorus in oxissol. Afr J Agric Res 9:3581–3586Google Scholar
  56. Matos FS, Ciappina AL, Rocha EC et al (2018) Factors that influence in Jatropha curcas L. latex production. Bragantia 77(1):74–82.  https://doi.org/10.1590/1678-4499.2016468 CrossRefGoogle Scholar
  57. Mbele MM, Hull RR, Dlamini ZZ (2017) African medicinal plants and their derivatives: current efforts towards potential anti-cancer drugs. Exp Mol Pathol 103(2):121–134.  https://doi.org/10.1016/j.yexmp.2017.08.002 CrossRefPubMedGoogle Scholar
  58. Meena KL, Yadav BL (2010) Some traditional ethnomedicinal plants of southern Rajasthan. Indian J Tradit Knowl 9:471–474Google Scholar
  59. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356CrossRefGoogle Scholar
  60. Mousinho KC, Oliveira Cde C, Ferreira JR et al (2011) Antitumor effect of laticifer proteins of Himatanthus drasticus (Mart.) Plumel -Apocynaceae. J Ethnopharmacol 137(1):421–426.  https://doi.org/10.1016/j.jep.2011.04.073 CrossRefPubMedGoogle Scholar
  61. Muhamad N, Syahirah Sazeli RM, Firdous J (2017) Effect of Jatropha curcas latex on L3 Haemonchus contortus larval motility. Int J Pharm Clin Res 9(3):197–200.  https://doi.org/10.25258/ijpcr.v9i3.8317 CrossRefGoogle Scholar
  62. Mwangi VI, Mumo RM, Nyachieo A et al (2017) Herbal medicine in the treatment of poverty associated parasitic diseases: a case of sub-Saharan Africa. J Herb Med 10:1–7.  https://doi.org/10.1016/j.hermed.2017.03.002 CrossRefGoogle Scholar
  63. Nath M, Choudhury MD (2010) Ethno-medico-botanical aspects of Hmar tribe of Cachar district, Assam (Part 1). Indian J Tradit Knowl 9:760–764Google Scholar
  64. Nath LK, Dutta SK (1991) Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol 43:111–114CrossRefGoogle Scholar
  65. Neuwinger HD (1996) African ethnobotany: poisons and drugs: chemistry, pharmacology, toxicology. Chapman and Hall, New York, pp 500–509Google Scholar
  66. Nothias-Scaglia LF, Dumontet V, Neyts J et al (2015) LCMS(2)-based dereplication of Euphorbia extracts with anti-Chikungunya virus activity. Fitoterapia 105:202–209CrossRefGoogle Scholar
  67. Odonne G, Berger F, Stien D et al (2011) Treatment of leishmaniasis in the Oyapock basin (French Guiana): A K.A.P. survey and analysis of the evolution of phytotherapy knowledge amongst Wayãpi. J Ethnopharmacol 137:1228–1239CrossRefGoogle Scholar
  68. Oskoueian E, Abdullah N, Saad WZ et al (2011) Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plant Res 5(1):49–57Google Scholar
  69. Osoniyi O, Onajobi F (2003) Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol 89(1):101–105CrossRefGoogle Scholar
  70. Oyi AR, Onaolapo JA, Haruna AK et al (2007) Antimicrobial screening and stability studies of the crude extract of Jatropha curcas Linn latex (Euphorbiacese). Niger J Pharm Sci 6:14–20Google Scholar
  71. Patil SV, Borase HP, Patil CD et al (2012) Biosynthesis of silver nanoparticles using latex from few Euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790CrossRefGoogle Scholar
  72. Patil CD, Borase HP, Suryawanshi RK et al (2016) Trypsin inactivation by latex fabricated gold nanoparticles: a new strategy towards insect control. Enzym Microb Technol 92:18–25CrossRefGoogle Scholar
  73. Peer D, Karp JM, Hong S et al (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2(12):751–760CrossRefGoogle Scholar
  74. Penon O, Marín MJ, Russell DA et al (2017) Water soluble, multifunctional antibody-porphyrin gold nanoparticles for targeted photodynamic therapy. J Colloid Interface Sci 496:100–110CrossRefGoogle Scholar
  75. Pereira IR, D’Abadia PL, do Prado ADL et al (2018) Trends and gaps in the global scientific literature about Jatropha curcas L. (Euphorbiaceae), a tropical plant of economic importance. Semin Ciênc Londrina 39(1):7–18CrossRefGoogle Scholar
  76. Perry LM, Metzger J (1980) Medicinal plants of East and Southeast Asia: attributed properties and uses. MIT Press, Cambridge, MA Brittonia 33(2):258Google Scholar
  77. Pullaiah T, Bahadur B (2013) Economic and medicinal importance of Jatropha. In: Bahadur B et al (eds) Jatropha, challenges for a new energy crop: vol 2: genetic improvement and biotechnology. Springer, New York, pp 187–217CrossRefGoogle Scholar
  78. Rajendran K, Balaji P, Basu MJ (2008) Medicinal plants and their utilization by villagers in southern districts of Tamil Nadu. Indian J Tradit Knowl 7:417–420Google Scholar
  79. Rajesh S, Raja DP, Rathi JM et al (2012) Biosynthesis of silver nanoparticles using Ulva fasciata (Delile) ethyl acetate extract and its activity against Xanthomonas campestris pv. malvacearum. J Biopest 5:119–128Google Scholar
  80. Ramos MV, Grangeiro TB, Freire EA et al (2010) The defensive role of latex in plants: detrimental effects on insects. Arthropod-Plant Inte 4(1):57–67CrossRefGoogle Scholar
  81. Ramos MV, de Oliveira RS, Pereira HM et al (2015) Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action. Phytochemistry 119:5–18CrossRefGoogle Scholar
  82. Rampadarath S, Puchooa D, Jeewon R (2016) Jatropha curcas L: phytochemical, antimicrobial and larvicidal properties. Asian Pac J Trop Biomed 6(10):858–865.  https://doi.org/10.1016/j.apjtb.2016.01.019 CrossRefGoogle Scholar
  83. Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125:13940–13941CrossRefGoogle Scholar
  84. Rebouças SO, Silva J, Groff AA et al (2012) The antiangiogenic activity of latex from Himatanthus articulatus. Braz J Pharmacogn 22(2):389–396CrossRefGoogle Scholar
  85. Sabandar CW, Ahmat N, Jaafar FM et al (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29.  https://doi.org/10.1016/j.phytochem.2012.10.009 CrossRefPubMedGoogle Scholar
  86. Salim MN, Masyitha D, Harris A et al (2018) Anti-inflammatory activity of Jatropha curcas Linn. latex in cream formulation on CD68 expression in mice skin wound. Vet World. EISSN: 2231-0916. Available at: www.veterinaryworld.org/Vol.11/February-2018/1.pdf
  87. Samuel JK, Andrews B (2010) Traditional medicinal plant wealth of Pachalur and Periyur hamlets Dindigul district, Tamil Nadu. Indian J Tradit Knowl 9:264–270Google Scholar
  88. Sharifi-Rad J, Salehi B, Stojanović-Radić ZZ et al (2017) Medicinal plants used in the treatment of tuberculosis – ethnobotanical and ethnopharmacological approaches. Biotechnol Adv. 2017 Jul 8. pii: S0734-9750(17)30077-0.  https://doi.org/10.1016/j.biotechadv.2017.07.001
  89. Sharma AK, Gangwar M, Kumar D et al (2016) Phytochemical characterization, antimicrobial activity and reducing potential of seed oil, latex, machine oil and presscake of Jatropha curcas. Avicenna J Phytomed 6(4):366–375PubMedPubMedCentralGoogle Scholar
  90. Silja VP, Varma KS, Mohanan KV (2008) Ethnomedicinal plant knowledge of the Mullu kuruma tribe of Wayanad district, Kerala. Indian J Tradit Knowl 7:604–612Google Scholar
  91. Singaravelu G, Arockiamary J, Kumar VG et al (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerfaces 57:97–101CrossRefGoogle Scholar
  92. Soares PM, Lima SR, Matos SG et al (2005) Antinociceptive activity of Calotropis procera latex in mice. J Ethnopharmacol 99:125–129CrossRefGoogle Scholar
  93. Sun C, Lee JSH, Zhang MQ (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60(11):1252–1265CrossRefGoogle Scholar
  94. Taiz L, Zeiger E (2017) Fisiologia vegetal, 6th edn. ArtMed, Porto AlegreGoogle Scholar
  95. Tewari JP, Shukla IK (1982) Inhibition of infectivity of two strains of watermelon mosaic virus by latex of some angiosperms. Geobios 9(3):124–126Google Scholar
  96. Thomas OO (1989) Re-examination of the antimicrobial activities of Xylopia aethiopica, Carica papaya, Ocimum gratissimum and Jatropha curcas. Fitoterapia 60(2):147–155Google Scholar
  97. Tripathi SC, Srivastava M (2010) Ethnomedicinal flora of Euphorbiaceae used in dermatological problems. Indian J Tradit Knowl 9:318–320Google Scholar
  98. van den Berg AJ, Horsten SF, Kettenes-van den Bosch JJ et al (1995) Curcacycline A – a novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358(3):215–218CrossRefGoogle Scholar
  99. Verma S, Chauhan NS (2007) Indigenous medicinal plants knowledge of Kunihar forest division, district Solan. Indian J Tradit Knowl 6:494–497Google Scholar
  100. Villegas LF, Fernández ID, Maldonado H et al (1997) Evaluation of the wound-healing activity of selected traditional medicinal plants from Perú. J Ethnopharmacol 55:193–200CrossRefGoogle Scholar
  101. Watson PJ, Fairall L, Santos GM et al (2012) Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature 481:335.  https://doi.org/10.1038/nature10728 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of southern and eastern Africa, 2nd edn. E.&S. Livingstone, Ltd, EdinburghGoogle Scholar
  103. Wole OM, Ayanbode OF (2009) Use of indigenous knowledge by women in a Nigerian rural community. Indian J Tradit Knowl 8:287–295Google Scholar
  104. Yang S, Ding MM, Chen F et al (2017) Proteomic analysis of latex from Jatropha curcas L. stems and comparison of two classic proteomic sample isolation methods: the phenol extraction and the TCA/acetone extraction. Electron J Biotechnol 27:14–24.  https://doi.org/10.1016/j.ejbt.2017.01.006 CrossRefGoogle Scholar
  105. Yesodharan K, Sujana KA (2007) Ethnomedicinal knowledge among Malamalasar tribe of Parambikulam wildlife sanctuary, Kerala. Indian J Tradit Knowl 6:481–485Google Scholar
  106. Zorzi A, Deyle K, Heinis C (2017) Cyclic peptide therapeutics: past, present and future. Curr Opin Chem Biol 38:24–29.  https://doi.org/10.1016/j.cbpa.2017.02.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Luciane Madureira Almeida
    • 1
    Email author
  • Fábio Santos Matos
    • 2
  • Elisa Flávia Luiz Cardoso Bailão
    • 1
  • Pablo José Gonçalves
    • 3
  1. 1.Universidade Estadual de Goiás – Campus de Ciências Exatas e TecnológicasAnápolisBrazil
  2. 2.Universidade Estadual de Goiás – Campus de IpameriIpameriBrazil
  3. 3.Universidade Federal de Goiás – Instituto de FísicaGoiâniaBrazil

Personalised recommendations