Jatropha: Phytochemistry, Pharmacology, and Toxicology

  • Nithiyanantham Srinivasan
  • Kalaiselvi Palanisamy
  • Sujatha Mulpuri


Jatropha curcas, a non-edible oilseed species with several uses and extensive lucrative prospective, is considered as a potential biofuel plant. Even though the genus Jatropha comprises ca. 200 species, to date just a few species have been investigated for their chemical constituents. There are still many species that have not received much attention on phytochemical and biological actions. On the other hand, few Jatropha species have been recognized for the pharmacological action of different crude extracts, proteins, peptides, and isolated compounds as antimicrobial, antifungal, antioxidant, anti-inflammatory, antidiarrheal, antihypertensive, antidiabetic, anticoagulant, and anticancer agents.


Bioactive compounds Jatropha Medicinal properties Nutraceutical 


  1. Abd-Elhamid HF (2004) Investigation of induced biochemical and histopathological parameters of acetonitrile extract of Jatropha curcas in albino rats. J Egypt Soc Parasitol 34:397–406PubMedGoogle Scholar
  2. Abigor RD, Opute FL, Opoku AR et al (1985) Partial purification and some properties of the lipase present in oil palm (Elaeis guineensis). J Sci Food Agric 36:399–406CrossRefGoogle Scholar
  3. Abigor RD, Uadia PO, Foglia TA et al (2002) Partial purification and properties of lipase from germinating seeds of Jatropha curcas L. J Am Oil Chem Soc 79:1123–1126CrossRefGoogle Scholar
  4. Abreu IC, Marinho ASS, Paes AMA et al (2003) Hypotensive and vasorelaxant effects of ethanolic extract from Jatropha gossypifolia L. in rats. Fitoterapia 74:650–657PubMedCrossRefGoogle Scholar
  5. Adam SEI (1974) Toxic effects of Jatropha curcas in mice. Toxicology 2:67–76PubMedCrossRefGoogle Scholar
  6. Aderibigbe AO, Johnson COLE, Makkar HPS et al (1997) Chemical composition and effect of heat on organic matter and nitrogen degradability and some antinutritional components of Jatropha meal. Anim Feed Sci Technol 67:223–243CrossRefGoogle Scholar
  7. Adolf W, Opferkuch HJ, Hecker E (1984) Irritant phorbol derivatives from four Jatropha species. Phytochemistry 23:129–132CrossRefGoogle Scholar
  8. Agbogidi OM, Ekeke EA (2011) Jatropha curcas: Linn an important but neglected plant species in Nigeria. J Biochem Res 281:52–62Google Scholar
  9. Ahmed OMM, Adam SEI (1979) Effects of Jatropha curcas on calves. Vet Pathol 16:476–482PubMedCrossRefGoogle Scholar
  10. Aiyelaagbe OO, Gloer JB (2008) Japodic acid, a novel aliphatic acid from Jatropha podagrica hook. Rec Nat Prod 2:100–106Google Scholar
  11. Aiyelaagbe OO, Adesogan EK, Ekundayo O et al (2000) The antimicrobial activity of roots of Jatropha podagrica (hook). Phytother Res 14:60–62PubMedCrossRefGoogle Scholar
  12. Aiyelaagbe OO, Adeniyi BA, Fatunsin OF et al (2007) In-vitro antimicrobial activity and photochemical analysis of Jatropha curcas roots. Int J Pharmacol 3:106–110CrossRefGoogle Scholar
  13. Akinpelu DA, Aiyegoro OA, Okoh AI (2009) The bioactive potentials of two medicinal plants commonly used as folklore remedies among some tribes in West Africa. Afr J Biotechnol 8:1660–1664Google Scholar
  14. Altei WF, Picchi DG, Barbosa SC et al (2008) NMR studies, solid phase synthesis and MD/SA simulation as a tool for structural elucidation of new bioactive peptides from the latex of Jatropha curcas L. Planta Med 74:1–338 (SL65)CrossRefGoogle Scholar
  15. Ambriz-Pérez DL, Bang WY, Nair V et al (2016) Protective role of flavonoids and lipophilic compounds from Jatropha platyphylla on the suppression of lipopolysaccharide (lps)-induced inflammation in macrophage cells. J Agric Food Chem 64:1899–1909PubMedCrossRefGoogle Scholar
  16. Amiry-Moghaddam M, Lindland H, Zelenin S et al (2005) Brain mitochondria contain aquaporin water channels: evidence for the expression of a short AQP9 isoform in the inner mitochondrial membrane. Fed Am Soc Exp Biol 19:1459–1467PubMedGoogle Scholar
  17. Apu AS, Ireen K, Hossan Bhuyan S et al (2012) Evaluation of analgesic, neuropharmacological and anti-diarrheal potential of Jatropha gossypifolia (Linn.) leaves in mice. J Med Sci 12:274–279CrossRefGoogle Scholar
  18. Apu AS, Hossain F, Rizwan F et al (2013) Study of pharmacological activities of methanol extract of Jatropha gossypifolia fruits. J Basic Clin Pharm 4:20–24CrossRefGoogle Scholar
  19. Aregheore EM, Makkar HPS, Becker K (1998) Assessment of lectin activity in a toxic and a non-toxic variety of Jatropha curcas using latex agglutination and haemagglutination methods and inactivation of lectin by heat treatments. J Sci Food Agric 77:349–352CrossRefGoogle Scholar
  20. Aregheore EM, Becker K, Makkar HPS (2003) Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments and preliminary nutritional evaluation with rats. South Pac J Nat Appl Sci 21:50–56Google Scholar
  21. Auvin C, Baraguey C, Blond A et al (1997) Curcacycline B, a cyclic nonapeptide from Jatropha curcas enhancing rotamase activity of cyclophilin. Tetrahedron Lett 38:2845–2848CrossRefGoogle Scholar
  22. Auvin-Guette C, Baraguey C, Blond A et al (1999) Pohlianins A, B and C, cyclic peptides from the latex of Jatropha pohliana ssp. molissima. Tetrahedron 55:11495–11510CrossRefGoogle Scholar
  23. Bahadur B, Reddy SM, Goverdhan S et al (1997) Antimicrobial activity in eight species of Jatropha L. (Euphorbiaceae). J Indian Bot Soc 77:190–191Google Scholar
  24. Balaji R, Suba V, Rekha N et al (2009) Hepatoprotective activity of methanolic fraction of Jatropha curcas on aflatoxin b1 induced hepatic carcinoma. Int J Pharm Sci 1:287–296Google Scholar
  25. Baraguey C, Auvin-Guette C, Blond A et al (1998) Isolation, structure and synthesis of chevalierins A, B and C, cyclic peptides from the latex of Jatropha chevalieri. J Chem Soc Perkin Trans 1:3033–3040CrossRefGoogle Scholar
  26. Baraguey C, Blond A, Correia I et al (2000) Mahafacyclin A, a cyclic heptapeptide from Jatropha mahafalensis exhibiting β-bulge conformation. Tetrahedron Lett 41:325–329CrossRefGoogle Scholar
  27. Baraguey C, Blond A, Cavelier F et al (2001) Isolation, structure and synthesis of mahafacyclin B, a cyclic heptapeptide from the latex of Jatropha mahafalensis. J Chem Soc Perkin Trans 1:2098–2103CrossRefGoogle Scholar
  28. Becker K, Makkar HPS (1998) Toxic effects of phorbol esters in carp (Cyprinus carpio). Vet Hum Toxicol 40:82–86PubMedGoogle Scholar
  29. Belmar RR, Nava-Montero C, Sandoval C et al (1999) Jack bean (Canavalia ensiformis L. DC.) in poultry diets: antinutritional factors and detoxification studies – a review. World Poult Sci J 55:37–59CrossRefGoogle Scholar
  30. Berkenkopf JW, Weichman BM (1988) Production of prostacyclin in mice following intraperitoneal injection of acetic acid, phenylbenzoquinone and zymosan: its role in the writhing response. Prostagladins 36:693–701CrossRefGoogle Scholar
  31. Bhagat R, Ambavade SD, Misar AV et al (2011) Anti-inflammatory activity of Jatropha gossypifolia L. leaves in albino mice and Winstar rat. J Sci Ind Res 70:289–292Google Scholar
  32. Bruneton J (1999) Pharmacognosy, phytochemistry, medicinal plants. Tech & Doc. Lavoisier, ParisGoogle Scholar
  33. Cai YL, Rakshit KD, Jian XL et al (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625CrossRefGoogle Scholar
  34. Cano-Asseleih LM, Plumbly RA, Hylands PJ (1989) Purification and partial characterization of the haemagglutination from seeds of Jatropha curcas. J Food Biochem 13:1–20CrossRefGoogle Scholar
  35. Cheeke PR (1971) Nutritional and physiological implications of saponins: a review. Can J Anim Sci 51:621–623CrossRefGoogle Scholar
  36. Chhabra SC, Mahunnah RL, Mshiu EN (1990) Plants used in traditional medicine in Eastern Tanzania III. Angiosperms (Euphorbiaceae to Menispermaceae). J Ethnopharmacol 28:255–283PubMedCrossRefGoogle Scholar
  37. Chivandi E, Mtimuni JP, Read JS et al (2004) Effect of processing method on phorbol ester concentration, total phenolics, trypsin inhibitor activity and the proximate composition of the Zimbabwean Jatropha curcas provenance: a potential livestock feed. Pak J Biol Sci 7:1001–1005CrossRefGoogle Scholar
  38. Craik DJ, Daly NL, Mulvenna J et al (2004) Discovery, structure and biological activities of the cyclotides. Curr Protein Pept Sci 5:297–315PubMedCrossRefGoogle Scholar
  39. Das B, Kashinatan A (1997) Indian J Chem Sect B 36:1077Google Scholar
  40. Desmarchelier C, Repetto M, Coussio J et al (1997) Total reactive antioxidant potential (trap) and total antioxidant reactivity of medicinal plants used in Southwest Amazona (Bolivia and Peru). Int J Pharm 35:288–296Google Scholar
  41. Devappa RK, Makkar HPS, Becker K (2011) Jatropha diterpenes: a review. J Am Oil Chem Soc 88:301–322CrossRefGoogle Scholar
  42. Diwani G, Rafie S, Hawash S (2009) Antioxidant activity of extracts obtained from residues of nodes leaves stem and root of Egyptian Jatropha curcas. Afr J Pharm Pharmacol 3:521–530Google Scholar
  43. Duffus CM, Duffus JH (1991) Introduction and overview. In: D’Mello FJP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. The Royal Society of Chemistry, Cambridge, pp 1–21Google Scholar
  44. El-Badwi SMA, Adam SEI, Hapke HJ (1995) Comparative toxicity of Ricinus communis and Jatropha curcas in brown hissex chicks. Dtsch Tierarztl Wochenschr 102:75–77PubMedGoogle Scholar
  45. El-Baz FK, Ali FF, El-Rahman AAA (2014) HPLC evaluation of phenolic profile, and antioxidant activity of different extracts of Jatropha curcas leaves. Int J Pharm Sci Rev Res 29:203–210Google Scholar
  46. Esimone CO, Nworu CS, Jackson CL (2009) Cutaneous wound healing activity of a herbal ointment containing the leaf extract of Jatropha curcas L. (Euphorbiaceae). Int J Appl Res Nat Prod 1:1–4Google Scholar
  47. Evans FJ (1986) Environmental hazards of diterpene esters from plants. In: Evans FJ (ed) Naturally occurring phorbol esters. CRC Press, Boca Raton, pp 1–31Google Scholar
  48. Fagbenro-Beyioku AF, Oyibo WA, Anuforom BC (1998) Disinfectant/antiparasitic activities of Jatropha curcas. East Afr Med J 75:508–511PubMedGoogle Scholar
  49. Goel G, Makkar HPS, Francis G et al (2007) Phorbol esters: structure, biological activity and toxicity in animals. Int J Toxicol 26:279–288PubMedCrossRefGoogle Scholar
  50. Graham JG, Quinn ML, Fabricant DS et al (2000) Plants used against cancer: an extension of the work of Jonathan Hartwell. J Ethnopharmacol 73:347–377PubMedCrossRefGoogle Scholar
  51. Haas W, Mittelbach M (2000) Detoxification experiments with the seed oil from Jatropha curcas L. Ind Crop Prod 12:111–118CrossRefGoogle Scholar
  52. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J Nat Prod 65:1434–1440PubMedCrossRefGoogle Scholar
  53. Hemalatha A, Radhakrishnaiah M (1993) Chemosystematics of Jatropha. J Econ Taxon Bot 17:75–77Google Scholar
  54. Hirota M, Suttajit M, Suguri H et al (1988) A new tumor promoter from the seed oil of Jatropha curcas L. an intra molecular diester of 12-deoxy-16-hydroxyphorbol. Cancer Res 48:5800–5804PubMedGoogle Scholar
  55. Hodek P, Trefil P, Stiborova M (2002) Flavonoids – potent and versatile biologically active compounds interacting with cytochrome P450. Chem Biol Interact 139:1–21PubMedCrossRefGoogle Scholar
  56. Horsten SF, Van den Berg AJ, Kettenes-van den Bosch JJ et al (1996) Cyclogossine A: a novel cyclic heptapeptide isolated from the latex of Jatropha gossypifolia. Planta Med 62:46–50PubMedCrossRefGoogle Scholar
  57. Huang MX, Hou P, Wei EQ et al (2008) A ribosome inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123CrossRefGoogle Scholar
  58. Hufford CD, Oguntimein BO (1987) Non-polar constituents of Jatropha curcas. Lloydia 41:161–165Google Scholar
  59. Igbinosa OO, Igbinosa EO, Aiyegore OA (2009) Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas L. Afr J Pharm Pharmacol 3:58–62Google Scholar
  60. Igbinosa OO, Igbinosa IH, Chigor VN et al (2011) Polyphenolic contents and antioxidant potential of stem bark extracts from Jatropha curcas (Linn). Int J Mol Sci 12:2958–2971PubMedPubMedCentralCrossRefGoogle Scholar
  61. Irvine FR (1961) Woody plants of Ghana, 2nd edn. Oxford University Press, LondonGoogle Scholar
  62. Iwu MM (1993) Handbook of African medicinal plants. CRC Press, New York, p 194Google Scholar
  63. Jin-Xia Z, Qin W, Li-Jun Z et al (2005) The extraction of β-1,3-glucanase and analysis of partial characteristics in Jatropha curcas. Southwest China J Agric Sci 18:328–333Google Scholar
  64. Johnson LT, Gee JM, Price K et al (1986) Influence of saponins in gut permeability and active nutrient transport in vitro. J Nutr 116:2270–2272PubMedCrossRefGoogle Scholar
  65. Jongschaap RE, Corre WJ, Bindraban PS et al (2007) Claims and facts on Jatropha curcas L. Plant Res Int 7:20–28Google Scholar
  66. Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819PubMedCrossRefGoogle Scholar
  67. Joullie MM, Richard DJ (2004) Cyclopeptide alkaloids: chemistry and biology. Chem Commun 21:2011–2015CrossRefGoogle Scholar
  68. Kannappan N, Jaikumar S, Manavalan R et al (2008) Antiulcer activity of methanolic extract of Jatropha curcas linn on aspirin induced gastric lesions in wistar rats. Pharmacol Newsl 1:279–293Google Scholar
  69. Kapil B, Koul IB, Banerjee SK et al (1993) Antihepatotoxic effects of major diterpenoid constituents of Andrographis paniculata. Biochem Pharmacol 46:182–185PubMedCrossRefGoogle Scholar
  70. Karaj S, Muller J (2010) Determination of physical, mechanical and chemical properties of seeds and kernels of Jatropha curcas L. Ind Crop Prod 32:129–138CrossRefGoogle Scholar
  71. Khafagy SM, Mohamed YA, Abdel NA et al (1977) Phytochemical study of Jatropha curcas. Planta Med 31:274–277CrossRefGoogle Scholar
  72. Kharat AR, Dolui AK, Das S (2011) Free radical scavenging potential of Jatropha gossypifolia. Asian J Chem 23:799–801Google Scholar
  73. Kirtikar KR, Basu BD (1991) Indian Med Plants 4:2240–2247Google Scholar
  74. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop industrial uses (Jatropha curcas L.): a review. Ind Crop Prod 28:1–10CrossRefGoogle Scholar
  75. Kumar V, Makkar HPS, Becker K (2008) Detoxification of Jatropha curcas seed meal and its utilization as a protein source in fish diet. 25th European Society for Comparative Physiology and Biochemistry (ESCPB) Congress, September 7–11, RavennaGoogle Scholar
  76. Kumar V, Makkar HPS, Becker K (2011a) Detoxified Jatropha curcas kernel meal as a dietary protein source: growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L.) fingerlings. Aquac Nutr 17:313–326CrossRefGoogle Scholar
  77. Kumar V, Makkar HPS, Becker K (2011b) Nutritional, physiological and haematological responses in rainbow trout (Oncorhynchus mykiss) juveniles fed detoxified Jatropha curcas kernel meal. Aquac Nutr 17:451–467CrossRefGoogle Scholar
  78. Kumari GNK, Aravind S, Balachandran J et al (2003) Antifeedant neo-clerodanes from Teucrium tomentosum Heyne (Labiatae). Phytochemistry 64:1119–1123CrossRefGoogle Scholar
  79. Kupchan SM, Sigel CW, Matz MJ et al (1970) Jatrophone, a novel macrocyclic diterpenoid tumor inhibitor from Jatropha gossypifolia. J Am Chem Soc 92:4476–4477CrossRefGoogle Scholar
  80. Langdon KR (1977) Physic nut, Jatropha curcas nematology (botany) circular No. 3,
  81. Lestari D, Mulder WJ, Sanders JPM (2010) Jatropha seed protein functional properties for technical applications. Biochem Eng J 53:297–304CrossRefGoogle Scholar
  82. Li H, Wang Z (2003) Review in the studies on tannins activity of cancer prevention and anticancer. Zhong-Yao-Cai 26:444–448PubMedGoogle Scholar
  83. Liang Y, Siddaramu T, Yesuf J et al (2010) Fermentable sugar release from Jatropha seed cakes following lime pretreatment and enzymatic hydrolysis. Bioresour Technol 101:6417–6424PubMedCrossRefGoogle Scholar
  84. Liberalino AAA, Bambirra EA, Moraes-Santos T et al (1988) Jatropha curcas L. seeds chemical analysis and toxicity. Braz Arch Biotechnol 31:539–550Google Scholar
  85. Liener IE (1989) Antinutritional factors in legume seeds: state of the art. In: Huisman J, Van der Poel TFB, Liener IE (eds) Recent advances of research in antinutritional factors in legume seeds. Pudoc, Wageningen, pp 6–14Google Scholar
  86. Lin J, Yan F, Tang L et al (2002) Isolation, purification and functional investigation on the N-glycosidase activity of curcin from the seeds of Jatropha curcas. High Technol Lett 11:36–40Google Scholar
  87. Lin J, Yan F, Tang L et al (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246PubMedGoogle Scholar
  88. Luseba D, Elgorashi EE, Ntloedibe DT et al (2007) Antibacterial, anti-inflammatory and mutagenic effects of some medicinal plants used in South Africa for the treatment of wounds and retained placenta in livestock. South Afr J Bot 73:378–383CrossRefGoogle Scholar
  89. Macneil A, Sumba OP, Lutzke ML et al (2003) Activation of the Epstein-Barr virus lytic cycle by the latex of the plant Euphorbia tirucalli. British J Cancer 88:1566–1569CrossRefGoogle Scholar
  90. Magdi AO (2007) Effect of different processing methods on nutrient composition, antinutritional factors, and in vitro protein digestibility of Dolichos lablab bean (Lablab purpuresus (L) sweet). Pak J Nutr 6:299–303CrossRefGoogle Scholar
  91. Makkar HPS, Becker K (1997a) Jatropha curcas toxicity: identification of toxic principles. In Fifth international symposium on poisonous plants, May 19–23, San Angelo, Texas, USAGoogle Scholar
  92. Makkar HPS, Becker K (1997b) Nutrients and antiquality factors in different morphological parts of the Moringa oleifera tree. J Agric Sci 128:311–322CrossRefGoogle Scholar
  93. Makkar HPS, Becker K (1999) Plant toxins and detoxification methods to improve feed quality of tropical seeds- review. Asian-Australas J Anim Sci 12:467–480CrossRefGoogle Scholar
  94. Makkar HPS, Becker K (2009a) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111:773–787CrossRefGoogle Scholar
  95. Makkar HPS, Becker K (2009b) Challenges and opportunities for using byproducts from the production of biodiesel from Jatropha oil as livestock feed. In: Proceedings of Animal Nutrition Association world conference, February 14–17, New Delhi, pp 168–170Google Scholar
  96. Makkar HPS, Becker K, Sporer F et al (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157CrossRefGoogle Scholar
  97. Makkar HPS, Aderibigbe AO, Becker K (1998) Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. Food Chem 62:207–215CrossRefGoogle Scholar
  98. Makkar HPS, Francis G, Becker K (2007) Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal 1:1371–1391PubMedCrossRefGoogle Scholar
  99. Makkar HPS, Herrera M, Becker K (2008a) Variations in seed number per fruit, seed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. J Plant Sci 3:260–265CrossRefGoogle Scholar
  100. Makkar HPS, Francis G, Becker K (2008b) Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J Sci Food Agric 88:1542–1548CrossRefGoogle Scholar
  101. Martinez-Herrera J, Siddhuraju P, Francis G et al (2006) Chemical composition, toxic/antimetabolic constituents and effects of different treatments on their levels, in four provenances of J. curcas L. from Mexico. Food Chem 96:80–89CrossRefGoogle Scholar
  102. Mishra SB, Vijayakumar M, Ojha SK et al (2010) Antidiabetic effect of Jatropha curcas L. levels extract in normal and alloxan-induced diabetic rats. Int J Pharm Sci 12:482–487Google Scholar
  103. Mitra CR, Bhatnagar SC, Sinha MK (1970) Chemical examination of J. curcas. Ind J Chem 8:1047Google Scholar
  104. Mongkolvisut W, Sutthivaiyakit S, Leutbecher H et al (2006) Integerrimides A and B, cyclic heptapeptides from the latex of Jatropha integerrima. J Nat Prod 69:1435–1441PubMedCrossRefGoogle Scholar
  105. Morita H, Kayashita T, Kobata H et al (1994) Pseudostellarins A–C, new tyrosinase inhibitory cyclic peptides from Pseudostellaria heterophylla. Tetrahedron 50:6797–6804CrossRefGoogle Scholar
  106. Morita H, Gonda A, Takeya K et al (1997) Solution state conformation of an immunosuppressive cyclic dodecapeptide, cycloleonurinin. Tetrahedron 53:7469–7478CrossRefGoogle Scholar
  107. Morita H, Iizuka T, Choo CY et al (2005) Dichotomins J and K, vasodilator cyclic peptides from Stellaria dichotoma. J Nat Prod 68:1686–1688PubMedCrossRefGoogle Scholar
  108. Morton JF (1981) Atlas of medicinal plants of middle America. Bahamas to Yucantan CC Thomas, SpringfieldGoogle Scholar
  109. Mothana RAA (2011) Anti-inflammatory, antinociceptive and antioxidant activities of the endemic Soqotraen Boswellia elongata Balf. f. and Jatropha unicostata Balf. f. in different experimental models. Food Chem Toxicol 49:2594–2599PubMedCrossRefGoogle Scholar
  110. Mpiana PT, Mudogo V, Tshibangu DST et al (2009) Antisickling activity of anthocyanins of Jatropha curcas L. Chem Med Value 25:101–108Google Scholar
  111. Mujumdar AM, Misar AV (2004) Anti-inflammatory activity of Jatropha curcas roots in mice and rats. J Ethnopharmacol 90:11–15PubMedCrossRefGoogle Scholar
  112. Mujumdar AM, Misar AV, Salaskar MV et al (2001) Antidiarrhoeal effect of an isolated fraction of Jatropha curcas roots in mice. J Nat Rem 1:89–93Google Scholar
  113. Naengchomnong W, Thebtaranonth Y, Wiriyachitra P et al (1986) Isolation and structure determination of four novel diterpenes of Jatropha curcas. Tetrahedron Lett 27:2439–2442CrossRefGoogle Scholar
  114. Naengchomnong W, Tarnchompoo B, Thebtaranonth Y (1994) (+)- Jatropa, (+)-marmesin, propacin and Jatrophin from the roots of Jatropha curcas (Euphorbiaceae). J Sci Soc Thai 20:73–83CrossRefGoogle Scholar
  115. Nath LK, Dutta SK (1988) Extraction and study of certain physicochemical properties of a new proteolytic enzyme from the latex of J. curcas Linn. Indian J Pharm Sci 50:125–127Google Scholar
  116. Nath LK, Dutta SK (1989) Kinetic studies on curcain, a protease from the latex of J. curcas Linn. Indian J Pharm Sci 50:43–47Google Scholar
  117. Nath LK, Dutta SK (1991) Extraction and purification of curcain, a protease from the latex of Jatropha curcas Linn. J Pharm Pharmacol 43:111–114PubMedCrossRefGoogle Scholar
  118. Nath LK, Dutta SK (1992) Wound healing response of the proteolytic enzyme curcain. Ind J Pharmacol 24:114–115Google Scholar
  119. Nath LK, Dutta SK (1997) Acute toxicity studies and wound healing response of curcain, a proteolytic enzyme extract from the latex of Jatropha curcas Linn. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. Technische Universit€at Graz, Graz, p 82Google Scholar
  120. NIIR Board of Consultants and Engineers (2006) Jatropha (biodiesel), Ashwagandha, Stevia, Brahmi and Jatamanshi herbs. Asia Pacific Business Press, DelhiGoogle Scholar
  121. Nithiyanantham S, Siddhuraju P, Francis G (2013) A promising approach to enhance the total phenolic content and antioxidant activity of raw and processed Jatropha curcas L. kernel meal extracts. Ind Crop Prod 43:261–269CrossRefGoogle Scholar
  122. Niu X, Li S, Zhao Q et al (2002) Two novel ent-kaurane diterpenoids isolated from Isodon xerophhilus var. laxiflora. Tetrahedron 43:661–664CrossRefGoogle Scholar
  123. Norton G (1991) Proteinase inhibitors. In: D’Mello FJP, Duffus CM, Duffus JH (eds) Toxic substances in crop plants. Royal Society of Chemistry, Cambridge/London, pp 68–106CrossRefGoogle Scholar
  124. Oduola T, Avwioro OG, Ayanniyi TB (2005) Suitability of the leaf extract of Jatropha gossypifolia as an anticoagulant for biochemical and haematological analyses. Afr J Biotechnol 4:679–681CrossRefGoogle Scholar
  125. Okuyama E, Okamoto Y, Yamazaki M et al (1996) Pharmacologically active components of a Peruvian medicinal plant, Huanarpo (Jatropha ciliata). Chem Pharm Bull 44:333–336PubMedCrossRefGoogle Scholar
  126. Olukunle JO, Adenubi OT, Oladele GM et al (2011) Studies on the anti-inflammatory and analgesic properties of Jatropha curcas leaf extract. Acta Vet Brno 80:259–262CrossRefGoogle Scholar
  127. Oskoueian E, Abdullah N, Saad WZ et al (2011) Antioxidant, anti-inflammatory and anticancer activities of methanolic extracts from Jatropha curcas Linn. J Med Plants Res 5:49–57Google Scholar
  128. Osoniyi O, Onajobi F (2003) Coagulant and anticoagulant activities in Jatropha curcas latex. J Ethnopharmacol 89:101–105PubMedCrossRefGoogle Scholar
  129. Owusu RK, Cowan DA (1989) Correlation between microbial protein thermostability and resistance to denaturation in aqueous: organic solvent two phase systems. Enzym Microbe Technol 11:568–574CrossRefGoogle Scholar
  130. Oyi AR, Onaolapo JA, Adigun JO (2002) Phytochemical and antimicrobial screening of the latex of Jatropha curcas Linn (Euphorbiaceae). J Phytomed Therap 7:63–74Google Scholar
  131. Panda BB, Gaur K, Kori ML et al (2009) Anti-inflammatory and analgesic activity of Jatropha gossypifolia in experimental animal models. Global J Pharmacol 3:1–5Google Scholar
  132. Parthasarathy MR, Pardha Saradhi K (1984) A coumarino-lignan from Jatropha glandulifera. Phytochemistry 23:867CrossRefGoogle Scholar
  133. Pieters LAC, Bruyne TED, Vlietinck AJ (1999) Low molecular weight compounds with complement activity. In: Wagner (ed) Immunomodulatory agents from plants; series: progress in inflammation research. Birkh€auser Verlag, Basel, pp 137–160CrossRefGoogle Scholar
  134. Pompelli MF, Barata-Luiz R, Vitorino HS et al (2010) Photosynthesis, photo-protection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215CrossRefGoogle Scholar
  135. Pullaiah T, Bahadur B (2013) Economic and medicinal importance of Jatrophas. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha challenges for a new energy crop, Genetic Improvement and Biotechnology, vol 2. Springer, New York, pp 187–217CrossRefGoogle Scholar
  136. Purohit MC, Purohit R (2011) Evaluation of antimicrobial and anti-inflammatory activities of bark of Jatropha gossypifolia. World J Sci Technol 10:1–5Google Scholar
  137. Rakshit KD, Bhagya S (2007) Effect of processing methods on the removal of toxic and antinutritional constituents of Jatropha meal: a potential protein source. J Food Sci Technol 3:88–95Google Scholar
  138. Rakshit KD, Bhagya S (2008) Biochemical and nutritional evaluation of Jatropha protein isolate prepared by steam injection heating for reduction of toxic and antinutritional factors. J Sci Food Agric 88:911–919CrossRefGoogle Scholar
  139. Rakshit KD, Makkar HPS, Becker K (2010) Nutritional, biochemical and pharmaceutical potential of proteins and peptides from Jatropha: review. J Agric Food Chem 58:6543–6555CrossRefGoogle Scholar
  140. Ramakrishna V, Jhansirani P, Ramakrishna RP (2006) Anti-nutritional factors during germination in Indian bean (Dolichos lablab L.) seeds. World J Dairy Food Sci 1:6–11Google Scholar
  141. Rampadarath S, Puchooa D, Mala V et al (2014) Antimicrobial, phytochemical and larvicidal properties of Jatropha multifida Linn. Asian Pac J Trop Med 7:380–383CrossRefGoogle Scholar
  142. Ravindranath N, Venkataiah B, Ramesh C et al (2003) Jatrophenone, a novel macrocyclic bioactive diterpene from Jatropha gossypifolia. Chem Pharma Bull 51:870–871CrossRefGoogle Scholar
  143. Rejila S, Vijayakumar N (2011) Allelopathic effect of Jatropha curcas on selected intercropping plants (green chilli and sesame). J Phytology 3:1–3Google Scholar
  144. Rejila S, Vijayakumar N, Jayakumar M (2012) Chromatographic determination of allelochemicals (phenolic acids) in Jatropha curcas by HPTLC. Asian J Plant Sci Res 2:123–128Google Scholar
  145. Richardson NL, Higgs DA, Beames RM et al (1985) Influence of dietary calcium, phosphorous, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile Chinook salmon Oncorhynchus tshawytscha. J Nutr 115:553–567PubMedCrossRefGoogle Scholar
  146. Rudi PL (1993) Immunomodulatory compounds. In: Steven MC, Russel JM (eds) Bioactive natural products: detection, isolation, and structure determination. CRC Press, London, pp 280–317Google Scholar
  147. Sabandar CW, Ahmat N, Jaafar FM (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29PubMedCrossRefGoogle Scholar
  148. Saetae D, Suntornsuk W (2010) Antifungal activities of ethanolic extract from Jatropha curcas seed cake. J Microbiol Biotechnol 20:319–324PubMedGoogle Scholar
  149. Sãnchez-Medina A, Garcia-Sosa K, May-Pat F et al (2001) Evaluation of biological activity of crude extracts from plants used in Yucatecan traditional medicine part L. Antioxidant, antimicrobial and betaglucosidase inhibition activities. Phytomedicine 8:144–151PubMedCrossRefGoogle Scholar
  150. Sarabia F, Chammaa S, Ruiz AS et al (2004) Chemistry and biology of cyclic depsipeptides of medicinal and biological interest. Curr Med Chem 11:1309–1332PubMedCrossRefGoogle Scholar
  151. Schmook B, Serralta Peraza L (1997) In Proceedings of Jatropha 97 Jatropha curcas: distribution and uses in Yucatan peninsula of Mexico, pp 1. 8Google Scholar
  152. Sen S, Makkar HPS, Becker K (1998) Alfalfa saponins and their implication in animal nutrition. J Agric Food Chem 46:131–140PubMedCrossRefGoogle Scholar
  153. Sharma SK, Singh H (2012) A review on pharmacological significance of genus Jatropha (Euphorbiaceae). Chin J Int Med 18:868–880CrossRefGoogle Scholar
  154. Shetty S, Udupa SL, Udupa AL et al (2006) Wound healing activity of bark extract of Jatropha curcas L. in albino rats. Saudi Med J 27:1473–1476PubMedGoogle Scholar
  155. Sievers AF, Andrewarcher W, Morre RH et al (1949) The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. J Econ Ent 42:549–551CrossRefGoogle Scholar
  156. Singh B, Bhat TK, Singh B (2003) Potential therapeutic applications of some antinutritional plant secondary metabolites. J Agric Food Chem 51:5579–5597PubMedCrossRefGoogle Scholar
  157. Singh RA, Munish K, Haiden E (2007) Synergistic cropping of summer groundnut with Jatropha curcas a new two-tier cropping system for Uttar Pradesh. ICRISAT J 5:1–2Google Scholar
  158. Sirisomboon P, Kitchaiya P, Pholpho T et al (2007) Physical and mechanical properties of Jatropha curcas L. fruits, nuts and kernels. Biosyst Eng 97:201–207CrossRefGoogle Scholar
  159. Solsoloy AD (1995) Pesticidal efficacy of the formulated physic nut, Jatropha curcas L. oil on pests of selected field crops. Philipp J Sci 124:59–74Google Scholar
  160. Solsoloy AD, Solsoloy TS (1997) Pesticidal efficacy of formulated J. curcas oil on pests of selected field crops. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas, Biofuels and Industrial Products from Jatropha curcas. DBV Graz, Graz, pp 216–226Google Scholar
  161. Staubmann R, Ncube I, Gubitz GM et al (1999) Esterase and lipase activity in Jatropha curcas L. seeds. J Biotechnol 75:117–126PubMedCrossRefGoogle Scholar
  162. Stripe F, Pession-brizzi A, Lorenzoni E et al (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Biochem J 156:1–6CrossRefGoogle Scholar
  163. Sukumaran D, Parashar BD, Rao KM (1995) Toxicity of Jatropha gossypifolia and Vaccaria pyramidata against freshwater snails vectors of animal schistosomiasis. Fitoterapia 66:393–398Google Scholar
  164. Thangavelu R, Sundararaju P, Sathiamoorthy S (2004) Management of anthracnose disease of banana caused by Colletotrichum musae using plant extracts. J Hortic Sci Biotechnol 79:664–668CrossRefGoogle Scholar
  165. Van den Berg AJJ, Horsten SFAJ, Kettenes-van den Bosch JJ et al (1996) Podacycline A and B, two cyclic peptides in the latex of Jatropha podagrica. Phytochemistry 42:129–133PubMedCrossRefGoogle Scholar
  166. Van-den Berg AJJ, Horsten SFA, Ketteness-van den Bosch JJ et al (1995) A novel cyclic octapeptide isolated from the latex of Jatropha curcas L. FEBS Lett 358:215–218PubMedCrossRefGoogle Scholar
  167. Vasconcelos IM, Oliveira JT (2004) Antinutritional properties of plant lectins. Toxicon 44:385–403PubMedCrossRefGoogle Scholar
  168. Wei Q, Huang MX, Xu Y et al (2005a) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357CrossRefGoogle Scholar
  169. Wei Q, Liao Y, Chen Y et al (2005b) Isolation, characterisation and antifungal activity of β-1,3-glucanase from seeds of Jatropha curcas. South Afr J Bot 71:95–99CrossRefGoogle Scholar
  170. Weike C, Qi Z, Xingchun C et al (2006) Chemical modification of Jatropha curcas RIPs (curcin) and effect of the modification on relative activity of curcin. Chin J Appl Environ Biol 12:329–333Google Scholar
  171. Wender P, Kee JM, Warrington JM (2008) Practical synthesis of prostratin, DPP and their analogs, adjuvant leads against latent HIV. Science 320:649–652PubMedPubMedCentralCrossRefGoogle Scholar
  172. Wink M, Koschmieder C, Sauerwein M et al (1997) Phorbol esters of J. curcas-biological activities and potential applications. In: Gubitz GM, Mittelbach M, Trabi M (eds) Biofuels and industrial products from Jatropha curcas. DBV Graz, Graz, pp 160–166Google Scholar
  173. Xu JJ, Tan NH (2012) Phenolic compounds from Jatropha curcas. Zhongguo Zhong Yao Za Zhi 37:3074–3077PubMedGoogle Scholar
  174. Yahara S, Shigeyama C, Nohara T et al (1989) Structures of anti-ace and renin peptides from Lycii radicis cortex. Tetrahedron Lett 30:6041–6042CrossRefGoogle Scholar
  175. Yasmin AY, Aurang AWK, Gholam MDP et al (2008) Effect of processing on anti-nutritional factors of red kidney bean (Phaseolus vulgaris) grains. Food Bioprocess Technol 1:415–419CrossRefGoogle Scholar
  176. Zhang Y, Wang Y, Jiang L (2007) Aquaporin JcPIP2 is involved in drought responses in Jatropha curcas. Acta Biochim Biophys Sin 39:787–794PubMedCrossRefGoogle Scholar
  177. Zhang FL, Niu B, Wang YC et al (2008) A novel betaine aldehyde dehydrogenase gene from Jatropha curcas, encoding an enzyme implicated in adaptation to environmental stress. Plant Sci 174:510–518CrossRefGoogle Scholar
  178. Zhang XP, Zhang ML, Su XH et al (2009) Chemical constituents of the plants from genus Jatropha. Chem Biodivers 6:2166–2183PubMedCrossRefGoogle Scholar
  179. Zippel J, Wells T, Hensel A (2010) Arabinogalactan protein from Jatropha curcas L. seeds as TGFβ1-mediated inductor of keratinocyte in in vitro differentiation and stimulation of GM-CSF, HGF, KGF and in organotypic skin equivalents. Fitoterapia 81:772–778PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Nithiyanantham Srinivasan
    • 1
  • Kalaiselvi Palanisamy
    • 2
  • Sujatha Mulpuri
    • 3
  1. 1.Tierra Seed Science Private LimitedHyderabadIndia
  2. 2.Graduate Institute of Clinical Medical SciencesTaichungTaiwan
  3. 3.ICAR-Indian Institute of Oilseeds ResearchHyderabadIndia

Personalised recommendations