Genetic Resources and Advances in the Development of New Varieties of Jatropha curcas L. in México

  • José Luis Solís Bonilla
  • Biaani Beeu Martínez ValenciaEmail author
  • Guillermo López-Guillén
  • Alfredo Zamarripa Colmenero


The objective of this chapter is to present the studies carried out in Mexico on Jatropha curcas L. for the generation of new varieties to satisfy the demand of the industries. The importance of genetic diversity to develop new improved varieties is discussed. Varietal trials were established in four tropical environments of Mexico based on genotypes selected according to their promising agronomical and industrial attributes. The main selection criteria addressed were grain yield, oil content, growth habit, and the presence of female flowers. J. curcas presents a large variation in yield over the years with several types of behavior. The best genotypes of the clonal trials were two clones with 100% female flowers and one clone with a predominance of male flowers, but also with the presence of female flowers. The oil content, fatty acid composition, and physicochemical characteristics of 13 selected elite genotypes were evaluated based on their yield, resulting in an oil content between 48.3% and 56.8%. The oil of J. curcas is considered unsaturated with the major components, in the genotypes evaluated, being oleic acid (21.5–39.7%) and linoleic acid (29.2–46.7%). Two female varieties with 100% female flowers were registered with the names “Gran Victoria” and “Doña Aurelia,” while a variety with the highest proportion of male flowers was used as a pollinator for the two female varieties and registered as “Don Rafael.”


Mexican jatropha breeding biodiesel 


  1. Achten WMJ, Verchot L, Franken YJ et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084. CrossRefGoogle Scholar
  2. Adebowale KO, Adedire CO (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol 5:901–906Google Scholar
  3. Akbar E, Yaakob Z, Kamarudin S et al (2009) Characteristics and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 29:396–403Google Scholar
  4. Avendaño ACH, Zamarripa CA (2012) Guía gráfica de descriptores varietales de piñón mexicano (Jatropha curcas L.), 1er edn. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), México SpanishGoogle Scholar
  5. Azam MM, Waris A, Nahar NM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302CrossRefGoogle Scholar
  6. Bernardini E (1981) Tecnología de aceites y grasas, 1ra edn. Ed. Española. Ed. Alambra S.A, Madrid SpanishGoogle Scholar
  7. Burley J, Huxley PA, Owino F (1984) Design, management and assessment of species, provenance and breeding trials of multipurpose trees. In: Barnes RD, Gibson GL (eds) Provenance and genetic improvement strategies in tropical forest trees. Commonwealth Forestry Institute, Oxford, pp 70–80Google Scholar
  8. Cannell MGR (1982) Crop and isolation ideotypes evidence for progeny differences in nursery grown Picea sitchensis. Silvae Genet 3:60–66Google Scholar
  9. Demarly Y (1977) Génetique et amélioration des plantes. Collection Sciencies Agronomiques, París FrenchGoogle Scholar
  10. Foidl N, Foildl G, Sanchez M et al (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:770–782CrossRefGoogle Scholar
  11. Hidalgo R (2003) Análisis Estadístico de Datos de Caracterización Morfológica de Recursos Fitogenéticos, 1er edn. Instituto Internacional de Recursos Fitogenéticos (IPGRI), Cali In SpanishGoogle Scholar
  12. Kaushik N, Kumar K, Kumar S et al (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502. CrossRefGoogle Scholar
  13. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070CrossRefGoogle Scholar
  14. Pandey VC, Singh K, Singh JS et al (2012) Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renew Sust Energ Rev 16:2870–2883. CrossRefGoogle Scholar
  15. Pecina QV, Anaya LJL, Zamarripa CA et al (2011) Molecular characterization of Jatropha curcas L. genetic resources from Chiapas, México through AFLP markers. Biomass Bioenergy 35:1897–1905CrossRefGoogle Scholar
  16. Pecina QV, Anaya LJL, Zamarripa CA et al (2014) Genetic structure of Jatropha curcas L. in México and probable centre of origin. Biomass Bioenergy 60:147–155. CrossRefGoogle Scholar
  17. Qing Y, Ping PD, Biao DZ et al (2007) Study on pollination biology of Jatropha curcas (Euphorbiaceae). J S China Agric Univ 28:62–66Google Scholar
  18. Shanker C, Dhyani SK (2006) Insect pests of Jatropha curcas L. and the potential for their management. Curr Sci 91:162–163Google Scholar
  19. SNICS (2014) Guía técnica para la descripción varietal de jatropha (Jatropha curcas L.), 1er edn. Servicio Nacional de Inspección y Certificación de Semillas, México Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación SpanishGoogle Scholar
  20. Steen EJ, Kang Y, Bokinsky G et al (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463:559–562. CrossRefPubMedGoogle Scholar
  21. Tiwari AK, Kumar A, Raheman H (2007) Biodiesel production from Jatropha curcas with high free fatty acids: an optimized process. Biomass Bioenergy 31:569–575CrossRefGoogle Scholar
  22. Tyagi R, Agrawal A (2015) Revised genebank standards for management of plant genetic resources. Indian J Agric Sci 85:157–165Google Scholar
  23. Zamarripa CA (2011) Estudio de Insumos para la Obtención de Biocombustibles en México. Informe final. Convenio de colaboración SAGARPA INIFAP, México In SpanishGoogle Scholar
  24. Zamarripa CA, Pecina QV (2017) New clonal varieties of Jatropha. In: Tsuchimoto S (ed) The Jatropha genome. Springer, Cham, pp 275–288Google Scholar
  25. Zamarripa CA, Solís BJL (2013a) Jatropha curcas L. Alternativa bioenergética en México, 1er edn. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), México SpanishGoogle Scholar
  26. Zamarripa CA, Solís BJL (2013b) Estado del arte y novedades de la bioenergía en México. In: La bioenergía en América Latina y El Caribe. El estado de arte en países seleccionados. Oficina regional para América Latina y el Caribe. RLC. ONU. Santiago de Chile, Chile, SpanishGoogle Scholar
  27. Zamarripa CA, Solís BJL, Iracheta DL et al (2012a) Mejoramiento de insumos agropecuarios para la producción de biocombustibles. Informe final. Instituto Nacional de Investigaciones forestales, Agrícolas y Pecuarias (INIFAP), México In SpanishGoogle Scholar
  28. Zamarripa CA, Solís BJL, Martínez VBB et al (2012b) Agronomic and biochemical study of Jatropha curcas L. in México. In: BIT’S 2nd Annual World Congress of Bioenergy. Xi’an. ChinaGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • José Luis Solís Bonilla
    • 1
  • Biaani Beeu Martínez Valencia
    • 1
    Email author
  • Guillermo López-Guillén
    • 1
  • Alfredo Zamarripa Colmenero
    • 1
  1. 1.Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP)Campo Experimental Rosario IzapaTuxtla ChicoMexico

Personalised recommendations