Can One Use Chlorophyll A Fluorescence as a Physiological Marker of Jatropha curcas L.?

  • Diolina Moura SilvaEmail author
  • Ramon Negrão SantosJr.
  • Pedro Corrêa DamascenoJr.


The Núcleo de Estudos da Fotossíntese (NEF) of the Universidade Federal do Espirito Santo studied the regulation of photosynthesis in J. curcas accessions from different regions of Brazil and the world. The effects of environmental variations of stress factors, such as rainfall and temperature, on the kinetics of chlorophyll a fluorescence (CF) induction in leaves of three genotypes, Janaúba (NEF 01), CPATSA 1501 (NEF 02), and CPATSA C2/10 (NEF 03), were investigated for 4 years. High performance of photosystem II, transpiration rate, and rate of net CO2 assimilation were observed mainly in the NEF 02 accession. Since it was necessary to understand the dependence of tolerance mechanisms to diverse environmental stresses, the NEF team followed the development of these plants in several locations. The coastal region presents warm humid tropical climate, in contrast with an inland region where the temperature is very hot in the summer and cold in winter with extremes around 8 °C. The development of J. curcas plants was affected by the level of photosynthetically active radiation, seasonality of temperature and precipitation, casting doubt on the agroclimatic zoning, which meant that physiological variables needed to be considered. The plants with the best yield were those grown in the inland region, although the photochemical efficiency (PIABS and PITOTAL) and the net assimilation of CO2 (A) of the plants in the coastal region were higher. The molecular mechanisms underlying the species adaptability may serve for modeling plant traits in order to maximize biofuel production and improve the agronomic features.


Net CO2 assimilation Photosynthetically active radiation Photochemical efficiency Rainfall Temperature 


  1. Allen DJ, Ratner K, Giller YE et al (2000) An overnight chill induces a delayed inhibition of photosynthesis at midday in mango (Mangifera indica L.). J Exp Bot 51(352):1893–1902Google Scholar
  2. Ao P-X, Li Z-G, Fan D-M et al (2013) Involvement of antioxidant defense system in chill hardening induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:153–160CrossRefGoogle Scholar
  3. Brestic M, Zivcak M, Kalaji HM et al (2012) Photosystem II thermo stability in situ: environmentally induced acclimation and genotype-specific reactions in Triticum aestivum L. Plant Physiol Biochem 57:93–105CrossRefGoogle Scholar
  4. Chen Z, Higgins JD, Hui JTL et al (2011) Retinoblastoma protein is essential for early meiotic events in Arabidopsis. Eur Mol Biol Org J 30:744–755CrossRefGoogle Scholar
  5. Christen D, Schönmann S, Jermini M et al (2007) Characterization and early detection of grapevine (Vitis vinifera) stress responses to esca disease by in situ chlorophyll fluorescence and comparison with drought stress. Environ Exp Bot 60:504–514CrossRefGoogle Scholar
  6. Collares DG (2012) Empresa Brasileira de Pesquisa Agropecuária [Internet]. Espirito Santo: Incentivos para pinhão-manso apresentados em Fórum no Espírito Santo [cited 2018 May 01]. Available from: (Portuguese)
  7. Deng X, Hu Z, Wang H et al (2003) A comparison of photosynthetic apparatus of the detached leaves of the resurrection plant Boea hygrometrica with its non-tolerant relative Chirita heterotrichia in response to dehydration and rehydration. Plant Sci 165:851–861CrossRefGoogle Scholar
  8. Falqueto AR, Silva Júnior RA, Gomes MTG et al (2017) Effects of drought stress on chlorophyll a fluorescence in two rubber tree clones. Sci Hort 224:238–243CrossRefGoogle Scholar
  9. Feitosa N, Garcia LM, Zonetti PC et al (2009) Levantamento de espécies de plantas daninhas na cultura do pinhão manso (Jatropha curcas L., Euphorbiaceae): VI Encontro Internacional de Produção Cientifica Cesumar; Maringá, Paraná (Portuguese)Google Scholar
  10. Flood PJ, Harbinson J, Aarts MG (2011) Natural genetic variation in plant photosynthesis. Trends Plant Sci 16:327–335CrossRefGoogle Scholar
  11. Galazzi EB (2011) Desempenho fotossintético de plantas de Jatropha curcas L. cultivadas no estado do Espirito Santo. Dissertation, Universidade Federal do Espírito Santo, Vitória (Portuguese)Google Scholar
  12. Galazzi EB, Silva DM (2011) Eficiência fotossintética em plantas de pinhão manso cultivadas em distintas áreas no Estado do Espírito Santo. Anais do II Congresso Brasileiro de Pesquisas de Pinhão-Manso; Brasília, Distrito Federal (Portuguese)Google Scholar
  13. Gama VN, Cunha JT, Lima IM et al (2013) Photosynthetic characteristics and quality of five passion fruit varieties under field conditions. Acta Physiol Plant 35:941–948CrossRefGoogle Scholar
  14. Gasparini XSS, Santos TA, Silva LF et al (2015) Phenotypic plasticity of Jatropha curcas L. and chlorophyll a fluorescence: Anais do XV Brazilian Congress of Plant Physiology, Campinas, São PauloGoogle Scholar
  15. Genty B, Briantais JM, Baker NR (1989) The relationship between photosystem II efficiency and quantum of yield photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92CrossRefGoogle Scholar
  16. Guidi L, Calatayud A (2014) Non-invasive tools to estimate stress-induced changes in photosynthetic performance in plants inhabiting Mediterranean areas. Environ Exp Bot 103:42–52CrossRefGoogle Scholar
  17. Ilik P, Schansker G, Kotabova E et al (2006) A dip in the chlorophyll fluorescence induction at 0.2–2s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochim Biophys Acta 1757:12–20CrossRefGoogle Scholar
  18. Kalaji HM, Jajoo A, Oukarroum A et al (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102. CrossRefGoogle Scholar
  19. Kelley LA, Gardner SP, Sutcliffe MJ (1996) An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng 9:1063–1065CrossRefGoogle Scholar
  20. Laviola BG, Rosado TB, Bhering LL et al (2010) Genetic parameters and variability in physic nut accessions during early developmental stages. Pesq Agropec Bras 45(10):1117–1123 (Portuguese)CrossRefGoogle Scholar
  21. Lazár D (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. J Theor Biol 335:249–264CrossRefGoogle Scholar
  22. Li Z-G, Yuan L-X, Wang Q-L et al (2013) Combined action of antioxidant defense system and osmolytes in chilling shock-induced chilling tolerance in Jatropha curcas seedlings. Acta Physiol Plant 35:2127–2136CrossRefGoogle Scholar
  23. Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Ann Rev Plant Physiol Plant Mol Biol 45:633–662CrossRefGoogle Scholar
  24. Machado MIP, Laviola BG (2011) Estudo bibliométrico da produção científica em pinhão manso no web of ciência no período de 1945 a 2011: II Congresso Brasileiro De Pesquisa De Pinhão-Manso; novembro de 2011; Brasília, Distrito Federal (Portuguese)Google Scholar
  25. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668CrossRefGoogle Scholar
  26. Morales-Flores F, Aguilar MI, King-Díaz B et al (2013) Derivatives of diterpen labdane-8a, 15-diol as photosynthetic inhibitors in spinach chloroplasts and growth plant inhibitors. J Photochem Photobiol 125:42–50CrossRefGoogle Scholar
  27. Neuner G, Larcher W (1991) The effect of light, during and subsequent to chilling, on the photosynthetic activity of two soybean cultivars, measured by in vivo chlorophyll fluorescence. Photosynthetica 25(2):257–266Google Scholar
  28. Ohada I, Berg A, Berkowicz SM et al (2011) Photoinactivation of photosystem II: is there more than one way to skin a cat? Physiol Plant 142:79–86CrossRefGoogle Scholar
  29. Oliveira PS, Pereira LS, Silva DC et al (2018) Hydraulic conductivity in stem of young plants of Jatropha curcas L. cultivated under irrigated or water deficit conditions. Ind Crop Prod 116:15–23CrossRefGoogle Scholar
  30. Osmond B (2014) Our eclectic adventures in the slower eras of photosynthesis: from New England down under to biosphere 2 and beyond. Annu Rev Plant Biol 65:1–32CrossRefGoogle Scholar
  31. Parker WC, Mohammed GH (2000) Photosynthetic acclimation of shade-grown red pine (Pinus resinosa Ait.) seedlings to a high light environment. New For 19:1–11CrossRefGoogle Scholar
  32. Pezzopane JEM, Castro FS, Pezzopane JRM et al (2012) Agrometeoreologia: aplicações para o Espírito Santo. Alegre, Espirito Santo, Caufes (Portuguese)Google Scholar
  33. Prado AKS (2007) Florescimento e frutificação em laranjeiras ‘Valência’ com diferentes cargas de frutos e submetidas ou não à irrigação. Brag Camp 66(2):173–182Google Scholar
  34. Rungrat T, Awlia M, Brown T et al (2016) Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. In: The arabidopsis book. The American Society of Plant Biologists.
  35. Santos CM (2008) Fenologia e capacidade fotossintética do pinhão-manso (Jatropha curcas L.). Dissertation, Universidade Federal de Alagoas, Rio Largo (Portuguese)Google Scholar
  36. Santos TA, Tessari LFA, Tonetti Júnior P et al (2012) Respostas fotossintéticas de três genótipos de pinhão manso analisados em condições de campo no município de Santa Teresa/ES: Anais do 5° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 8° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; Salvador, Bahia (Portuguese)Google Scholar
  37. Santos TA, Gasparini XSS, Tessari LFA et al (2014) Photosynthetic efficiency and chlorophyll fluorescence of Jatropha curcas L. in greenhouse and field: 16th international congress on photobiology. Universidad Nacional de Córdoba, Argentina, Córdoba, p 56Google Scholar
  38. Schansker G, Tóth SZ, Holzwarth AR et al (2013) Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynth Res 5:1–7Google Scholar
  39. Schock AA, Ramm A, Martinazzo EG et al (2014) Crescimento e fotossíntese de plantas de pinhão-manso cultivadas em diferentes condições de luminosidade. Rev Bras Engenharia Agrícola Ambient Campina Grande 18:3–9 (Portuguese)CrossRefGoogle Scholar
  40. Schreiber U, Schliwa U, Bilger W (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulated fluorometer. Photosynth Res 10:51–62CrossRefGoogle Scholar
  41. SEAG (2009) Secretaria de Estado da Agricultura, Abastecimento, Aquicultura e Pesca. Aspectos fitofisionômicos [Internet]. 2009 June [cited 2009 Jun 20]. Available from: (Portuguese)
  42. Singh P, Singh S, Mishra SP et al (2010) Molecular characterization of genetic diversity in Jatropha curcas L. Genes Genomes Genomics 4:1–8Google Scholar
  43. Souza A, Wang J-Z, Dehesh K (2017) Retrograde signals: integrators of interorganellar communication and orchestrators of plant development. Annu Rev Plant Biol 68:85–108CrossRefGoogle Scholar
  44. Stirbet A (2013) Excitonic connectivity between photosystem II units: what is it, and how to measure it? Photosynth Res 116:189–214CrossRefGoogle Scholar
  45. Stirbet A, Govindjee (2012) Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. Photosynth Res 113:15–61CrossRefGoogle Scholar
  46. Stirbet A, Riznichenko GY, Rubin AB et al (2014) Modeling chlorophyll a fluorescence transient: relation to photosynthesis. Biochemistry 79(4):291–323PubMedGoogle Scholar
  47. Stirbet A, Lazár D, Kromdijk J et al (2018) Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56:86–104CrossRefGoogle Scholar
  48. Strasser RJ, Govindjee (1991) The F0 and the O-J-I-P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, New York, pp 423–426Google Scholar
  49. Strasser RJ, Strasser BJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. In: Mathis P (ed) Photosynthesis: from light to biosphere, V. Kluwer Academic Publishers, Dordrecht, pp 977–980Google Scholar
  50. Strasser RJ, Srivastava A, Tsimilli-Michael M (1999) Screening the vitality and photosynthetic activity of plants by fluorescence transient. In: Behl RK, Punia MS, Lather BPS (eds) Crop improvement for food security. SSARM, Hisar, pp 79–126Google Scholar
  51. Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescent transient as a tool to characterise and screen photosynthesic samples. In: Yunus M, Pathre U, Mohanty P (eds) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483Google Scholar
  52. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC (ed) Chlorophyll a fluorescence: a signature of photosynthesis-advances in photosynthesis and respiration. Springer, Rotterdam, pp 321–362CrossRefGoogle Scholar
  53. Strasser RJ, Tsimilli-Michael M, Qiang S et al (2010) Simultaneous in vivo recording of prompt and delayed fluorescence and 820-nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. Biochim Biophys Acta 1797:1313–1326CrossRefGoogle Scholar
  54. Tanya P, Taeprayoon P, Hadkam Y et al (2011) Genetic diversity among Jatropha and Jatropha-related species based on ISSR markers. Plant Mol Biol Rep 29:252–264CrossRefGoogle Scholar
  55. Tessari LFA, Santos TA, Sabino DSG et al (2012) Plasticidade fenotípica de três genótipos de pinhão manso em resposta à temperatura: Anais do 5° Congresso da Rede Brasileira de Tecnologia de Biodiesel e 8° Congresso Brasileiro de Plantas Oleaginosas, Óleos, Gorduras e Biodiesel; Salvador, Bahia (Portuguese)Google Scholar
  56. Toledo JV, Martins LD, Klippel VH et al (2009) Zoneamento agroclimático para a cultura do pinhão manso (Jatropha curcas L.) e da mamona (Ricinus communis L.) no estado do Espírito Santo. ACSA – Agrop Cient Semi-Árido 5:41–51 (Portuguese)Google Scholar
  57. Tsimilli-Michael M, Strasser RJ (2008) Experimental resolution and theoretical complexity determine the amount of information extractable from the chlorophyll fluorescence transient OJIP. In: Allen JF, Gantt E, Golbeck JH, Osmond B (eds) Photosynthesis. Energy from the sun: 14th international congress on photosynthesis. Springer, Dordrecht, pp 697–701CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Diolina Moura Silva
    • 1
    Email author
  • Ramon Negrão SantosJr.
    • 1
  • Pedro Corrêa DamascenoJr.
    • 2
  1. 1.Núcleo de Estudos da FotossínteseUniversidade Federal do Espirito SantoVitóriaBrazil
  2. 2.Instituto de Agronomia, Departamento de FitotecniaUniversidade Federal Rural do Rio de JaneiroSeropédicaBrazil

Personalised recommendations