Advertisement

Proteomic Studies in Jatropha curcas Seeds

  • José Ángel Huerta-Ocampo
  • Ana Paulina Barba de la RosaEmail author
Chapter

Abstract

Jatropha curcas (L.) has gained interest when it is realized as a potential source of vegetable oil for biodiesel production, a process that results with a press-cake rich in protein. However, press-cake cannot be used without processing due to its high content of toxic and antinutritional compounds. The Jatropha genetic resources remain poorly characterized; however in Mexico exists in the wild a non-toxic J. curcas genotype with high potential as a source of information for plant breeding in order to obtain varieties with increased oil contents and low amount of toxic compounds that will increase the use of press-cake as feedstock. Then it is necessary to unravel the mechanisms of triacylglycerol and antinutrients biosynthesis pathways. Proteomics is a powerful tool that has been used to identify the proteins that are accumulated in the different seed tissues, e.g. endosperm, integument, oil bodies, and plastids, with the aim to generate information about key enzymes that could be potential targets for the development of new strategies for the selective breeding of Jatropha.

Keywords

Endosperm Integuments Non-toxic genotypes Oil bodies Seed storage proteins Shotgun analysis Two-dimensional gel electrophoresis 

Notes

Acknowledgements

We thank Dr. Miguel A. Angulo Escalante-CIAD Culiacan Mexico for providing Jatropha seeds, Iván Takeshi Cerritos Castro for Jatropha pictures, and Ofelia Rico for manuscript reviewing.

References

  1. Achten WMJ, Maes WH, Aerts R et al (2010) Jatropha: from global hype to local opportunity. J Arid Environ 74:164–165CrossRefGoogle Scholar
  2. Bewley JD, Derek J, Black M (1994) Seeds: physiology of development and germination. Plenum Press, New York, p 445CrossRefGoogle Scholar
  3. Ceasar SA, Ignacimuthu S (2011) Applications of biotechnology and biochemical engineering for the improvement of Jatropha and biodiesel: a review. Renew Sust Energ Rev 15:5176–5185CrossRefGoogle Scholar
  4. Costa GG, Cardoso KC, Del Bem LE et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462Google Scholar
  5. Devappa RK, Makkar JPS, Becker K (2012) Localisation of antinutrients and qualitative identification of toxic components in Jatropha curcas seed. J Sci Food Agric 92:1519–1525CrossRefGoogle Scholar
  6. Greenwood JS, Helm M, Gleti C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci U S A 103:2238–2243Google Scholar
  7. Gu K, Yi C, Tian D et al (2012) Expression of fatty acid and lipid biosynthetic genes in developing endosperm of Jatropha curcas. Biotechnol Biofuels 5:47CrossRefGoogle Scholar
  8. Hara-Nishimura I, Hatsugai N (2011) The role of vacuole in plant cell death. Cell Death Differ 18:1298–1304CrossRefGoogle Scholar
  9. He W, King AJ, Khan MA et al (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49:1183–1190CrossRefGoogle Scholar
  10. Hortin GL, Sviridov D (2010) The dynamic range problem in the analysis of the plasma proteome. J Proteome 73:629–636CrossRefGoogle Scholar
  11. Huang M, Friso G, Nishimura K et al (2013) Construction of plastid reference proteomes for maize and Arabidopsis and evaluation of their orthologous relationships; the concept of orthoproteomics. J Proteome Res 12:491–504CrossRefGoogle Scholar
  12. Jiang H, Wu P, Zhang S et al (2012) Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds. PLoS One 7:e36522CrossRefGoogle Scholar
  13. King AJ, He W, Cuevas JA et al (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905CrossRefGoogle Scholar
  14. King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenergy Res 4:211–221CrossRefGoogle Scholar
  15. Kumar A, Tewari SK (2015) Origin, distribution, ethnobotany and pharmacology of Jatropha curcas. Res J Med Plant 9:58–59CrossRefGoogle Scholar
  16. Kumar P, Srivastava VC, Jha MK (2016) Jatropha curcas phytotomy and applications: development as a potential biofuel plant through biotechnological advancements. Renew Sust Energ Rev 59:818–838CrossRefGoogle Scholar
  17. León-Villanueva A, Huerta-Ocampo JA, Barrera-Pacheco A et al (2018) Proteomic analysis of non-toxic Jatropha curcas byproduct cake: fractionation and identification of the major components. Ind Crop Prod 111:694–704CrossRefGoogle Scholar
  18. Li C, Ng A, Xie L et al (2016) Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep 35:103–114CrossRefGoogle Scholar
  19. Liu H, Liu YJ, Yang MF et al (2009) A comparative analysis of embryo and endosperm proteome from seeds of Jatropha curcas. J Integr Plant Biol 51:850–857CrossRefGoogle Scholar
  20. Liu P, Wang CM, Li L et al (2011a) Mapping QTLs for oil traits and eQTLs for oleosin genes in jatropha. BMC Plant Biol 11:132Google Scholar
  21. Liu H, Yang Z, Yang M et al (2011b) The differential proteome of endosperm and embryo from mature seed of Jatropha curcas. Plant Sci 181:660–666Google Scholar
  22. Liu H, Wang C, Komatsu S et al (2013) Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation. J Proteome 91:23–40CrossRefGoogle Scholar
  23. Liu H, Wang C, Chen F et al (2015) Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content. J Proteome 113:403–414CrossRefGoogle Scholar
  24. Maghuly F, Laimer M (2013) Jatropha curcas, a biofuel crop: functional genomics for understanding metabolic pathways and genetic improvement. Biotechnol J 8:1172–1182CrossRefGoogle Scholar
  25. Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added co-products. Eur Lipid Sci Technol 111:773–787CrossRefGoogle Scholar
  26. Makkar HPS, Becker K, Sporer F et al (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157CrossRefGoogle Scholar
  27. Mandal S, Mandal RK (2000) Seed storage proteins and approaches for improvement of their nutritional quality by genetic engineering. Curr Sci 79:576–589Google Scholar
  28. Martinez-Herrera J, Siddhuraju P, Francis G et al (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89Google Scholar
  29. Miernyk JA, Hajduch M (2011) Seed proteomics. J Proteome 74:389–400CrossRefGoogle Scholar
  30. Miernyk JA, Johnston ML (2013) Proteomic analysis of the testa from developing soybean seeds. J Proteome 89:265–272CrossRefGoogle Scholar
  31. Moniruzzaman M, Yaakob Z, Khatun R (2016) Biotechnology for Jatropha improvement: a worthy exploration. Renew Sust Energ Rev 54:1262–1277CrossRefGoogle Scholar
  32. Ovando-Medina I, Espinosa-García FJ, Núñez-Farfán JS et al (2011) State of the art of genetic diversity research in Jatropha curcas L. Sci Res Essays 6:1709–1719Google Scholar
  33. Pinheiro CB, Shah M, Soares EL et al (2013) Proteome analysis of plastids from developing seeds of Jatropha curcas L. J Proteome Res 12:5137–5145CrossRefGoogle Scholar
  34. Popluechai S, Froissard M, Jolivet P et al (2011) Jatropha curcas oil body proteome and oleosins: L-form JcOle3 as a potential phylogenetic marker. Plant Physiol Biochem 49:352–356CrossRefGoogle Scholar
  35. Raorane M, Popluechai S, Gatehouse AMR et al (2013) Proteomic perspectives on understanding and improving Jatropha curcas L. In: Bahadur B, Sujatha M, Carels N (eds) Jatropha, challenges for a new energy crop (Vol 2): Genetic improvement and biotechnology. Springer, New York, pp 375–391Google Scholar
  36. Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M et al (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13Google Scholar
  37. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodelling during plant development. Biochim Biophys Acta 1847:889–899CrossRefGoogle Scholar
  38. Rotundo JL, Westgate ME (2009) Meta-analysis of environmental effects on soybean seed composition. Field Crops Res 110:147–156Google Scholar
  39. Saeed M, Arain MA, Arif M et al (2017) Jatropha (Jatropha curcas L.) meal is an alternative protein source in poultry nutrition. Worlds Poult Sci J 73:1–8CrossRefGoogle Scholar
  40. Sato S, Hirakawa H, Isobe S et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76CrossRefGoogle Scholar
  41. Shah M, Soares EL, Carvalho PC et al (2015) Proteomic analysis of the endosperm ontogeny of Jatropha curcas L. seeds. J Proteome Res 14:2557–2568CrossRefGoogle Scholar
  42. Shah M, Soares EL, Lima MLB et al (2016) Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. J Proteome 143:346–352CrossRefGoogle Scholar
  43. Shimada TL, Hayashi M, Hara-Nishimura I (2018) Membrane dynamics and multiple functions of oil bodies in seeds and leaves. Plant Physiol 176:199–207CrossRefGoogle Scholar
  44. Soares EL, Shah M, Soares AA et al (2014) Proteome analysis of the inner integument from developing Jatropha curcas L. seeds. J Proteome Res 13:3562–3570CrossRefGoogle Scholar
  45. Soares EL, Lima ML, Nascimento JR et al (2017) Seed development of Jatropha curcas L. (Euphorbiaceae): integrating anatomical, ultrastructural and molecular studies. Plant Cell Rep 36:1707–1716CrossRefGoogle Scholar
  46. Sun F, Liu P, Ye J et al (2012) An approach for jatropha improvement using pleiotropic QTLs regulating plant growth and seed yield. Biotechnol Biofuels 5:42CrossRefGoogle Scholar
  47. Wang CM, Liu P, Yi C et al (2011) A first generation microsatellite-and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632CrossRefGoogle Scholar
  48. Wen M, Wang H, Xia Z et al (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42CrossRefGoogle Scholar
  49. Wilkins MR, Sanchez JC, Gooley AA et al (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50CrossRefGoogle Scholar
  50. Wu P, Zhou C, Cheng S et al (2015) Integrated genome sequence and linkage map of physic nut (Jatropha curcas L.), a biodiesel plant. Plant J 81:810–821CrossRefGoogle Scholar
  51. Xu R, Wang R, Liu A (2011) Expression profiles of genes involved in fatty acid and triacylglycerol synthesis in developing seeds of Jatropha (Jatropha curcas L.). Biomass Bioenergy 35:1683–1692CrossRefGoogle Scholar
  52. Yue GH, Sun F, Liu P (2013) Status of molecular breeding for improving Jatropha curcas and biodiesel. Renew Sust Energ Rev 26:332–343CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • José Ángel Huerta-Ocampo
    • 1
  • Ana Paulina Barba de la Rosa
    • 2
    Email author
  1. 1.CONACYT-Centro de Investigación en Alimentación y Desarrollo A. C. Laboratorio de Bioquímica de Proteínas y GlicanosHermosilloMexico
  2. 2.IPICYT, Instituto Potosino de Investigación Científica y TecnológicaSan Luis Potosí, SLPMexico

Personalised recommendations