Advertisement

Genetic Improvement of Edible and Non-edible Jatropha for Marginal Environments in Sub-Saharan Africa

  • Matthias MartinEmail author
  • Brigitte Bohlinger
  • Elisa Senger
  • Euloge Dongmeza
  • Zafitsara Tantely Andrianirina
  • Juan M. Montes
Chapter

Abstract

Jatropha has been grown in the past mainly for producing oil for biofuels preferably in marginal environments in sub-Saharan Africa, yet many projects collapsed due to overestimated yields and underestimated costs. The cultivation of jatropha genotypes that produce seeds lacking toxic phorbol esters (“non-toxic jatropha,” “edible jatropha”) currently receives increasing attention for animal feeding and food production. We give an overview of the challenges of jatropha cultivation in sub-Saharan Africa, discuss results from field trials in marginal environments from that region, and propose strategies for jatropha genetic improvement. Average seed yields obtained from selected hybrids at marginal places in Cameroon and Madagascar over 4 years demonstrated superiority of hybrids (2.2–8.3 t/ha) over wild germplasm, considerable extent of midparent heterosis (~400%), and potential to select for stably performing hybrids exhibiting less genotype-by-environment interaction. Cultivation of edible and non-edible jatropha hybrids had positive contribution margins per hectare and year (124–665 €/ha) in contrast to negative contribution margins of wild germplasm. The main breeding objective for edible and non-edible jatropha is to increase seed yield and stability across years and environments. Breeding objectives for seed quality parameters differ depending on the market segment. New hybrid varieties adapted to different climates have now become available. Jatropha companies and institutions providing solutions for superior genetics and technical guidance will lead to a new start in jatropha cultivation to turn future projects into success stories.

Keywords

Breeding Edible jatropha Genetic improvement Marginal environments Non-toxic jatropha Sub-Saharan Africa 

Notes

Acknowledgments

This chapter is dedicated to the late Klaus Tropf, co-founder of JatroSolutions GmbH and jatropha pioneer.

References

  1. Abdelraheem HF, Lang A, Elsayed MEA (2013) Jatropha curcas: a viable alternative source of clean energy to meet Sudan’s growing energy demand. In: Proceeding – 2013 International Conference on Computing, Electrical and Electronics Engineering, ICCEEE 2013:287–293.  https://doi.org/10.1109/ICCEEE.2013.6633949
  2. Acheampong E, Campion BB (2014) The effects of biofuel feedstock production on farmers’ livelihoods in Ghana: the case of Jatropha curcas. Sustainability 6(7):4587–4607.  https://doi.org/10.3390/su6074587 CrossRefGoogle Scholar
  3. Achten WMJ, Verchot L, Franken YJ et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32(12):1063–1084.  https://doi.org/10.1016/j.biombioe.2008.03.003 CrossRefGoogle Scholar
  4. Aguilera-Cauich EA, Pérez-Brito D, Yabur AN et al (2015) Assessment of phenotypic diversity and agronomic contrast in American accessions of Jatropha curcas L. Ind Crops Prod 77:1001–1003.  https://doi.org/10.1016/j.indcrop.2015.09.063 CrossRefGoogle Scholar
  5. Ahmed A, Campion BB, Gasparatos A (2017) Biofuel development in Ghana: policies of expansion and drivers of failure in the jatropha sector. Renew Sust Energ Rev 70:133–149.  https://doi.org/10.1016/j.rser.2016.11.216 CrossRefGoogle Scholar
  6. Almeida J, Moonen P, Soto I, Achten WMJ, Muys B (2014) Effect of farming system and yield in the life cycle assessment of Jatropha-based bioenergy in Mali. Energy Sustain Dev 23:258–265.  https://doi.org/10.1016/j.esd.2014.10.001 CrossRefGoogle Scholar
  7. Alves AA, Laviola BG, Formighieri EF, Carels N (2015) Perennial plants for biofuel production: bridging genomics and field research. Biotechnol J 10(4):505–507.  https://doi.org/10.1002/biot.201400201 CrossRefPubMedGoogle Scholar
  8. Becker K, Wulfmeyer V, Berger T, Gebel J, Münch W (2013) Carbon farming in hot, dry coastal areas: an option for climate change mitigation. Earth Syst Dyn 4(2):237–251.  https://doi.org/10.5194/esd-4-237-2013 CrossRefGoogle Scholar
  9. Bosch C, Zeller M (2013) The impacts of wage employment on a Jatropha plantation on income and food security of rural households in Madagascar – a panel data analysis. Q J Int Agric 52(2):119–140Google Scholar
  10. Bouffaron P, Castagno F, Herold S (2012) Straight vegetable oil from Jatropha curcas L. for rural electrification in Mali – a techno-economic assessment. Biomass Bioenergy 37:298–308.  https://doi.org/10.1016/j.biombioe.2011.11.008 CrossRefGoogle Scholar
  11. Bressan EA, Sebbenn AM, Ferreira RR et al (2013) Jatropha curcas L. (Euphorbiaceae) exhibits a mixed mating system, high correlated mating and apomixis. Tree Genet Genomes 9(4):1089–1097.  https://doi.org/10.1007/s11295-013-0623-y CrossRefGoogle Scholar
  12. Chapuis A, Blin J, Codina V et al (2013) Performances Techno-Economiques Des Procédés de Production de Biocarburants à Partir de Jatropha. 4ème Conférence Int Biocarburants Bioénergies 4:1–22Google Scholar
  13. Diédhiou I, Diédhiou PM, Ndir K et al (2012) Diversity, farming systems, growth and productivity of Jatropha curcas L. in the Sudano-Sahelian Zone of Senegal, West Africa. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha, challenges for a new energy crop. Volume 1: Farming, economics and biofuel. Springer, New York, pp 281–295CrossRefGoogle Scholar
  14. Diédhiou I, Diallo D, Mbengue A et al (2017) Allometric equations and carbon stocks in tree biomass of Jatropha curcas L. in Senegal’s Peanut Basin. Glob Ecol Conserv 9:61–69.  https://doi.org/10.1016/j.gecco.2016.11.007 CrossRefGoogle Scholar
  15. FAO (1994) Review of CGIAR priorities and strategies. Annex I. Agroecological zones framework and database for the review of CGIAR priorities and strategies. (Cited 2018 Mar 28). Available from: http://www.fao.org/wairdocs/tac/x5756e/x5756e0j.htm
  16. FAOSTAT (2018) Producer prices – annual. (Cited 2018 Mar 28). Available from: http://www.fao.org/faostat/en/#data/PP
  17. Gasparatos A, Von Maltitz GP, Johnson FX et al (2015) Biofuels in sub-Sahara Africa: drivers, impacts and priority policy areas. Renew Sust Energ Rev 45:879–901.  https://doi.org/10.1016/j.rser.2015.02.006 CrossRefGoogle Scholar
  18. Gatete C, Dabat MH (2017) From the fuel versus food controversy to the institutional vacuum in biofuel policies: evidence from West African countries. Energy Sustain Soc 7(12).  https://doi.org/10.1186/s13705-017-0114-3
  19. GTZ (2009) Jatropha reality check. A field assessment of the agronomic and economic viability of Jatropha and other oilseed crops in Kenya. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, EschbornGoogle Scholar
  20. He W, King AJ, Khan MA et al (2011) Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. Plant Physiol Biochem 49(10):1183–1190.  https://doi.org/10.1016/j.plaphy.2011.07.006 CrossRefPubMedGoogle Scholar
  21. Heller J (1996) Physic nut. Jatropha curcas L. promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, RomeGoogle Scholar
  22. Hunsberger C (2016) Explaining bioenergy: representations of jatropha in Kenya before and after disappointing results. Springerplus 5(1):2000.  https://doi.org/10.1186/s40064-016-3687-y CrossRefPubMedPubMedCentralGoogle Scholar
  23. JatroSolutions (2018) Jatropha Value Chain (Cited 2018 Mar 27). Available from: http://www.jatrosolutions.com/
  24. Jingura RM (2011) Technical options for optimization of production of Jatropha as a biofuel feedstock in arid and semi-arid areas of Zimbabwe. Biomass Bioenergy 35(5):2127–2132.  https://doi.org/10.1016/j.biombioe.2011.02.015 CrossRefGoogle Scholar
  25. Jingura RM (2012) Socio-economy, agro-ecological zones, agronomic practices and farming system of Jatropha curcas L. in sub-saharan Africa. In: Carels N, Sujatha M, Bahadur B (eds) Jatropha, challenges for a new energy crop. Volume 1: Farming, economics and biofuel. Springer, New York, pp 53–69CrossRefGoogle Scholar
  26. Jingura RM, Kamusoko R (2018) Experiences with Jatropha cultivation in sub-Saharan Africa: implications for biofuels policies. Energy Sources B Econ Plan Policy.  https://doi.org/10.1080/15567249.2012.675014
  27. King AJ, He W, Cuevas JA et al (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60(10):2897–2905.  https://doi.org/10.1093/jxb/erp025 CrossRefPubMedGoogle Scholar
  28. King AJ, Montes LR, Clarke JG et al (2013) Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. Plant Biotechnol J 11(8):986–996.  https://doi.org/10.1111/pbi.12092 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li H, Tsuchimoto S, Harada K et al (2017) Genetic tracing of Jatropha curcas L. from its mesoamerican origin to the world. Front Plant Sci 8:1539.  https://doi.org/10.3389/fpls.2017.01539 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Luo MJ, Liu WX, Yang XY et al (2007) Cloning, expression, and antitumor activity of recombinant protein of curcin. Russ J Plant Physiol 54(2):202–206.  https://doi.org/10.1134/S1021443707020070 CrossRefGoogle Scholar
  31. Makkar HPS, Becker K (2009) Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. Eur J Lipid Sci Technol 111(8):773–787.  https://doi.org/10.1002/ejlt.200800244 CrossRefGoogle Scholar
  32. Martin M, Montes JM (2015) Quantitative genetic parameters of agronomic and quality traits in a global germplasm collection reveal excellent breeding perspectives for Jatropha curcas L. GCB Bioenergy 7(6):1335–1343.  https://doi.org/10.1111/gcbb.12227 CrossRefGoogle Scholar
  33. Martinez Herrera J, Arguello García E, Sanchez Sanchez O et al (2017) Fortification of hotcakes from edible flour of non-toxic Mexican Jatropha curcas L. Afr J Food Sci 11(4):106–111.  https://doi.org/10.5897/AJFS2016.1551 CrossRefGoogle Scholar
  34. Montes JM, Melchinger AE (2016) Domestication and breeding of Jatropha curcas L. Trends Plant Sci 21(12):1045–1057.  https://doi.org/10.1016/j.tplants.2016.08.008 CrossRefPubMedGoogle Scholar
  35. Montes Osorio LR, Torres Salvador AF, Jongschaap REE et al (2014) High level of molecular and phenotypic biodiversity in Jatropha curcas from Central America compared to Africa, Asia and South America. BMC Plant Biol 14(1):77.  https://doi.org/10.1186/1471-2229-14-77 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Montes JM, Technow F, Bohlinger B et al (2013) Seed quality diversity, trait associations and grouping of accessions in Jatropha curcas L. Ind Crop Prod 51:178–185.  https://doi.org/10.1016/j.indcrop.2013.08.046 CrossRefGoogle Scholar
  37. Montes J, Technow F, Martin M (2014) Genetic diversity in Jatropha curcas L. assessed with SSR and SNP markers. Diversity 6(3):551–566.  https://doi.org/10.3390/d6030551 CrossRefGoogle Scholar
  38. Muys B, Norgrove L, Alamirew T et al (2014) Integrating mitigation and adaptation into development: the case of Jatropha curcas in sub-Saharan Africa. GCB Bioenergy 6(3):169–171.  https://doi.org/10.1111/gcbb.12070 CrossRefGoogle Scholar
  39. Ngugi K, Nabiswa A, Kinama J (2012) Adaptation of Jatropha curcas L. in the agroecological environments of Kenya: genotype × environment interactions analysis. Biofuels (5):535–543.  https://doi.org/10.4155/bfs.12.47
  40. Noulèkoun F, Lamers JPA, Naab J et al (2017) Shoot and root responses of woody species to silvicultural management for afforestation of degraded croplands in the Sudano-Sahelian zone of Benin. For Ecol Manag 385:254–263.  https://doi.org/10.1016/j.foreco.2016.11.018 CrossRefGoogle Scholar
  41. Nygaard I, Bolwig S (2017) The rise and fall of foreign private investment in the jatropha biofuel value chain in Ghana. Environ Sci Pol.  https://doi.org/10.1016/j.envsci.2017.08.007
  42. Osei I, Akowuah J, Kemausuor F (2016) Techno-economic models for optimised utilisation of Jatropha curcas linnaeus under an out-grower farming scheme in Ghana. Resources 5(4):38.  https://doi.org/10.3390/resources5040038 CrossRefGoogle Scholar
  43. Ouattara B, Ndir KN, Gueye MC et al (2014) Genetic diversity of Jatropha curcas L. in Senegal compared with exotic accessions based on microsatellite markers. Genet Resour Crop Evol 61(6):1039–1045.  https://doi.org/10.1007/s10722-014-0106-5 CrossRefGoogle Scholar
  44. Prasad DMR, Izam A, Khan MR (2012) Jatropha curcas: plant of medical benefits. J Med Plant Res 6(14):2691–2699.  https://doi.org/10.5897/JMPR10.977 CrossRefGoogle Scholar
  45. Ramos MJ, Fernández CM, Casas A (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100(1):261–268.  https://doi.org/10.1016/j.biortech.2008.06.039 CrossRefPubMedGoogle Scholar
  46. Ravaoarinirina Z, Rahariseheno I, Rakotosaona R et al (2016) Valorisation du tourteau de Jatropha curcas en amendement organique fertilisant. Mada-Hary 5(1):49–56Google Scholar
  47. Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215–223Google Scholar
  48. Rodrigues J, Miranda I, Gominho J et al (2013) Variability in oil content and composition and storage stability of seeds from Jatropha curcas L. grown in Mozambique. Ind Crop Prod 50:828–837.  https://doi.org/10.1016/j.indcrop.2013.08.038 CrossRefGoogle Scholar
  49. Romijn H, Heijnen S, Colthoff JR et al (2014) Economic and social sustainability performance of jatropha projects: results from field surveys in Mozambique, Tanzania and Mali. Sustainability 6(9):6203–6235.  https://doi.org/10.3390/su6096203 CrossRefGoogle Scholar
  50. Sabandar CW, Ahmat N, Jaafar FM et al (2013) Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): a review. Phytochemistry 85:7–29.  https://doi.org/10.1016/j.phytochem.2012.10.009 CrossRefPubMedGoogle Scholar
  51. Sanou H, Angulo-Escalante MA, Martinez-Herrera J et al (2015) Loss of genetic diversity of Jatropha curcas L. Through domestication: implications for its genetic improvement. Crop Sci 55(2):749–759.  https://doi.org/10.2135/cropsci2014.02.0165 CrossRefGoogle Scholar
  52. Santos DN, Ferreira JL, Pasqual M et al (2016) Population structure of jatropha and its implication for the breeding program. Genet Mol Res 15(1):1–11.  https://doi.org/10.4238/gmr.15017770 CrossRefGoogle Scholar
  53. Senger E, Martin M, Dongmeza E et al (2016) Genetic variation and genotype by environment interaction in Jatropha curcas L. germplasm evaluated in different environments of Cameroon. Biomass Bioenergy 91:10–16.  https://doi.org/10.1016/j.biombioe.2016.04.017 CrossRefGoogle Scholar
  54. Senger E, Bohlinger B, Esgaib S et al (2017) Chuta (edible Jatropha curcas L.), the newcomer among underutilized crops: a rich source of vegetable oil and protein for human consumption. Eur Food Res Technol 243(6):987–997.  https://doi.org/10.1007/s00217-016-2814-x CrossRefGoogle Scholar
  55. Shortall OK (2013) “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energy Policy 62:19–27.  https://doi.org/10.1016/j.enpol.2013.07.048 CrossRefGoogle Scholar
  56. Slingerland M, Schut M (2014) Jatropha developments in Mozambique: analysis of structural conditions influencing niche-regime interactions. Sustainability 6(11):7541–7563.  https://doi.org/10.3390/su6117541 CrossRefGoogle Scholar
  57. Somorin TO, Di Lorenzo G, Kolios AJ (2017) Life-cycle assessment of self-generated electricity in Nigeria and Jatropha biodiesel as an alternative power fuel. Renew Energy 113:966–979.  https://doi.org/10.1016/j.renene.2017.06.073 CrossRefGoogle Scholar
  58. Terren M, Saverys S, de Haveskercke PJ et al (2012) Attempted cultivation of Jatropha curcas L. in the lower Senegal river valley: story of a failure. Tropicultura 30(4):204–208Google Scholar
  59. Tiendrebeogo FK, Sawadogo N, Nanema RK et al (2016) Evaluation de la diversité génétique du pourghère (Jatropha curcas L.) au Burkina Faso [Assessment of genetic diversity of Jatropha curcas L. in Burkina Faso]. Int J Innov Appl Stud 16(1):155–165Google Scholar
  60. van Eijck J, Romijn H, Smeets E et al (2014) Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania. Biomass Bioenergy 61:25–45.  https://doi.org/10.1016/j.biombioe.2013.10.005 CrossRefGoogle Scholar
  61. von Maltitz G, Gasparatos A, Fabricius C (2014) The rise, fall and potential resilience benefits of Jatropha in Southern Africa. Sustainability 6(6):3615–3643.  https://doi.org/10.3390/su6063615 CrossRefGoogle Scholar
  62. Wicke B, Smeets E, Watson H, Faaij A (2011) The current bioenergy production potential of semi-arid and arid regions in sub-Saharan Africa. Biomass Bioenergy 35(7):2773–2786.  https://doi.org/10.1016/j.biombioe.2011.03.010 CrossRefGoogle Scholar
  63. Zamarripa-Colmenero A, Pecina-Quintero V (2017) New clonal varieties of Jatropha. In: Tsuchimoto S (ed) The Jatropha genome. Springer, Cham, pp 275–288Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Matthias Martin
    • 1
    Email author
  • Brigitte Bohlinger
    • 1
  • Elisa Senger
    • 1
  • Euloge Dongmeza
    • 2
  • Zafitsara Tantely Andrianirina
    • 3
  • Juan M. Montes
    • 4
  1. 1.JatroSolutions GmbHStuttgartGermany
  2. 2.JatroSahel SARLYaoundéCameroon
  3. 3.TatsAina Agro ConsultingAntananarivoMadagascar
  4. 4.Institute of Plant Breeding, Seed Science, and Population GeneticsUniversity of HohenheimStuttgartGermany

Personalised recommendations