Statistical Deferred Cesàro Summability Mean Based on (pq)-Integers with Application to Approximation Theorems

  • S. K. PaikrayEmail author
  • B. B. Jena
  • U. K. Misra


This chapter consists of four sections. The first section is introductory in which a concept (presumably new) of statistical deferred Cesàro summability mean based on (pq)-integers has been introduced and accordingly some basic terminologies are presented. In the second section, we have applied our proposed mean under the difference sequence of order r to prove a Korovkin-type approximation theorem for the set of functions 1, \(e^{-x}\) and \(e^{-2x}\) defined on a Banach space \(C[0,\infty )\) and demonstrated that our theorem is a non-trivial extension of some well-known Korovkin-type approximation theorems. In the third section, we have established a result for the rate of our statistical deferred Cesàro summability mean with the help of the modulus of continuity. Finally, in the last section, we have given some concluding remarks and presented some interesting examples in support of our definitions and results.


Statistical convergence Statistical deferred Cesàro summability Delayed arithmetic mean Difference sequence of order r (p q)-integers Banach space Positive linear operators Korovkin-type approximation theorem Rate of convergence 

2010 Mathematics Subject Classification

Primary 40A05 41A36 Secondary 40G15 


  1. 1.
    T. Acar, A. Aral, S.A. Mohiuddine, On Kantorovich modifications of \((p, q)\)-Baskakov operators. J. Inequal. Appl. 2016, 98 (2016)Google Scholar
  2. 2.
    R.P. Agnew, On deferred Cesàro means. Ann. Math. 33, 413–421 (1932)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P.N. Agrawal, A.S. Kumar, T.A.K. Sinha, Stancu type generalization of modified Schurer operators based on \(q\)-integers. Appl. Math. Comput. 226, 765–776 (2014)Google Scholar
  4. 4.
    W.A. Al-Salam, Operational representations for the Laguerre and other polynomials. Duke Math. J. 31, 127–142 (1964)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Aral, V. Gupta, On \(q\)-analogue of Stancu-beta operators. Appl. Math. Lett. 25, 67–71 (2012)Google Scholar
  6. 6.
    C.A. Bektaş, M. Et, R. Çolak, Generalized difference sequence spaces and their dual spaces. J. Math. Anal. Appl. 292, 423–432 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    C. Belen, S.A. Mohiuddine, Generalized statistical convergence and application. Appl. Math. Comput. 219, 9821–9826 (2013)Google Scholar
  8. 8.
    B.D. Boyanov, V.M. Veselinov, A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum. 14, 9–13 (1970)Google Scholar
  9. 9.
    N.L. Braha, H.M. Srivastava, S.A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin mean. Appl. Math. Comput. 228, 162–169 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    A.A. Das, B.B. Jena, S.K. Paikray, R.K. Jati, Statistical deferred weighted summability and associated Korovokin-type approximation theorem. Nonlinear Sci. Lett. A 9(3), 238–245 (2018)Google Scholar
  11. 11.
    O.H.H. Edely, S.A. Mohiuddine, A.K. Noman, Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Et, R. Çolak, On some generalized difference sequence spaces. Soochow J. Math. 21, 377–386 (1995)Google Scholar
  13. 13.
    H. Fast, Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)MathSciNetCrossRefGoogle Scholar
  14. 14.
    B.B. Jena, S.K. Paikray, U.K. Misra, Inclusion theorems on general convergence and statistical convergence of \((L,1,1)\) - summability using generalized Tauberian conditions. Tamsui Oxf. J. Inf. Math. Sci. 31, 101–115 (2017)Google Scholar
  15. 15.
    B.B. Jena, S.K. Paikray, U.K. Misra, Statistical deferred Cesaro summability and its applications to approximation theorems. Filomat 32, 1–13 (2018)Google Scholar
  16. 16.
    U. Kadak, P. Baliarsingh, On certain Euler difference sequence spaces of fractional order and related dual properties. J. Nonlinear Sci. Appl. 8, 997–1004 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    U. Kadak, S.A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the \((p, q)\)-gamma function and related approximation theorems. Results Math. 73, 9 (2018)Google Scholar
  18. 18.
    H. Kızmaz, On certain sequence spaces. Can. Math. Bull. 24, 169–176 (1981)MathSciNetCrossRefGoogle Scholar
  19. 19.
    P.P. Korovkin, Convergence of linear positive operators in the spaces of continuous functions (in Russian). Dokl. Akad. Nauk. SSSR (New Ser.) 90, 961–964 (1953)Google Scholar
  20. 20.
    S.A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical summability \((C,1)\) and a Korovkin type approximation theorem. J. Inequal. Appl. 2012, 1–8 (2012). Article ID 172Google Scholar
  21. 21.
    S.A. Mohiuddine, Statistical \(A\)-summability with application to Korovkin’s type approximation theorem. J. Inequal. Appl. 2016 (2016). Article ID-101Google Scholar
  22. 22.
    F. Móricz, Tauberian conditions under which statistical convergence follows from statistical summability \((C, 1)\). J. Math. Anal. Appl. 275, 277–287 (2002)Google Scholar
  23. 23.
    M. Mursaleen, Md. Nasiuzzaman, A. Nurgali, Some approximation results on Bernstein-Schurer operators defined by \((p, q)\)-integers. J. Inequal. Appl. 2015(249), 1–12 (2015)Google Scholar
  24. 24.
    T. Pradhan, S.K. Paikray, B.B. Jena, H. Dutta, Statistical deferred weighted \(\cal{B}\)-summability and its applications to associated approximation theorems. J. Inequal. Appl. 2018, 1–21 (2018). Article Id: 65Google Scholar
  25. 25.
    H.M. Srivastava, H.L. Manocha, A Treatise on Generating Functions (Ellis Horwood Limited, Chichester) (Wiley, Halsted, New York, Toronto, 1984)Google Scholar
  26. 26.
    H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. (RACSAM) 112, 1487–1501 (2018)CrossRefGoogle Scholar
  27. 27.
    H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, A certain class of weighted statistical convergence and associated Korovkin type approximation theorems for trigonometric functions. Math. Methods Appl. Sci. 41, 671–683 (2018)Google Scholar
  28. 28.
    H.M. Srivastava, B.B. Jena, S.K. Paikray, U.K. Misra, Deferred weighted \(\cal{A}\)-statistical convergence based upon the \((p, q)\)-Lagrange polynomials and its applications to approximation theorems. J. Appl. Anal. 24, 1–16 (2018)Google Scholar
  29. 29.
    H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)Google Scholar
  30. 30.
    O.V. Viskov, H.M. Srivastava, New approaches to certain identities involving differential operators. J. Math. Anal. Appl. 186, 1–10 (1994)MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Zygmund, Trigonometric Series, vol. I, II, 2nd edn. (Cambridge University, Cambridge, 1993)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsVeer Surendra Sai University of TechnologyBurlaIndia
  2. 2.Department of MathematicsNational Institute of Science and TechnologyBerhampurIndia

Personalised recommendations