Multi-response Optimization of Micro-EDM Processes: A State-of-the-Art Review

  • Soumava Boral
  • Sarabjeet Singh Sidhu
  • Prasenjit ChatterjeeEmail author
  • Shankar Chakraborty
  • Agam Gugaliya
Part of the Materials Forming, Machining and Tribology book series (MFMT)


The demand of micro-machining with a diameter ranging from microns to some hundred is rising gradually in the field of aerospace, biomaterials, electronics, and automobiles, due to its noteworthy applications and benefits in miniaturized merchandises and gadgets. µ-EDM is the well-known non-traditional method used for making micro-metallic holes with assorted benefits like its distinguishing non-contact feature and thermoelectric energy between the workpiece to be machined and the electrode to be used. μ-EDM is a modification of the traditional EDM, rendering an imperative function in the generation of micro-features on hard-to-machine materials. In recent years, both processes, i.e., EDM and μ-EDM, are used extensively for production of dies, mold making, cavities, and complex 3D structures. The micro-components are typically finished by hard-to-machine materials and hold multifaceted shaped micro-structures that required accuracy in the level of sub-micron machining. This chapter provides an overview and the theoretical study of the latest 10-year researches from 2009 to 2018 that used decision-making and nature-inspired techniques in optimizing machining parameters of μ-EDM and μ-WEDM processes.


µ-EDM Multi-response optimization modeling techniques MCDM 


  1. 1.
    Jahan M, Rahman M, Wong Y (2011) A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int J Mach Tools Manuf 51(12):837–858CrossRefGoogle Scholar
  2. 2.
    Ho K, Newman S, Rahimifard S, Allen R (2004) State of the art in wire electrical discharge machining (WEDM). Int J Mach Tools Manuf 44(12–13):1247–1259CrossRefGoogle Scholar
  3. 3.
    Wong Y, Rahman M, Lim H, Han H, Ravi N (2003) Investigation of micro-EDM material removal characteristics using single RC-pulse discharges. J Mater Process Technol 140(1–3):303–307CrossRefGoogle Scholar
  4. 4.
    Guitrau EB (1997) The EDM handbook. Hanser Gardner Publications CincinnatiGoogle Scholar
  5. 5.
    Ho K, Newman S (2003) State of the art electrical discharge machining (EDM). Int J Mach Tools Manuf 43(13):1287–1300CrossRefGoogle Scholar
  6. 6.
    Gao C, Liu Z (2003) A study of ultrasonically aided micro-electrical-discharge machining by the application of workpiece vibration. J Mater Process Technol 139(1–3):226–228CrossRefGoogle Scholar
  7. 7.
    Nakaoku H, Masuzawa T, Fujino M (2007) Micro-EDM of sintered diamond. J Mater Process Technol 187:274–278CrossRefGoogle Scholar
  8. 8.
    Tsai YY, Masuzawa T (2004) An index to evaluate the wear resistance of the electrode in micro-EDM. J Mater Process Technol 149(1–3):304–309CrossRefGoogle Scholar
  9. 9.
    Tan PC, Yeo SH, Tan YV (2008) Effects of nanopowder additives in micro-electrical discharge machining. Int J Precision Eng Manuf 9(3):22–26Google Scholar
  10. 10.
    Chen SL, Lin MH, Huang GX, Wang CC (2014) Research of the recast layer on implant surface modified by micro-current electrical discharge machining using deionized water mixed with titanium powder as dielectric solvent. Appl Surf Sci 311:47–53CrossRefGoogle Scholar
  11. 11.
    Raju L, Sanghvi VS, Somashekhar SH, Singaperumal M (2014) Effect of process parameters on quality of micro holes machined on copper plate using developed μ-EDM setup. Appl Mech Mater 592–594:229–233CrossRefGoogle Scholar
  12. 12.
    Sivaprakasam P, Hariharan P, Gowri S (2014) Modeling and analysis of micro-WEDM process of titanium alloy (Ti-6Al-4V) using response surface approach. Eng Sci Technol Int J 17(4):227–235CrossRefGoogle Scholar
  13. 13.
    Kibria G, Sarkar B, Pradhan B, Bhattacharyya B (2010) Comparative study of different dielectrics for micro-EDM performance during microhole machining of Ti-6Al-4 V alloy. Int J Adv Manuf Technol 48(5–8):557–570CrossRefGoogle Scholar
  14. 14.
    Pradhan B, Masanta M, Sarkar B, Bhattacharyya B (2009) Investigation of electro-discharge micro-machining of titanium super alloy. Int J Adv Manuf Technol 41(11–12):1094–1106CrossRefGoogle Scholar
  15. 15.
    Meena VK, Azad MS (2012) Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater Manuf Processes 27(9):973–977CrossRefGoogle Scholar
  16. 16.
    Saleh T, Dahmardeh M, Nojeh A, Takahata K (2013) Dry micro-electro-discharge machining of carbon-nanotube forests using sulphur-hexafluoride. Carbon 52:288–295CrossRefGoogle Scholar
  17. 17.
    Liew PJ, Yan J, Kuriyagawa T (2013) Carbon nanofiber assisted micro electro discharge machining of reaction-bonded silicon carbide. J Mater Process Technol 213(7):1076–1087CrossRefGoogle Scholar
  18. 18.
    Natarajan N, Suresh P (2015) Experimental investigations on the microhole machining of 304 stainless steel by micro-EDM process using RC-type pulse generator. Int J Adv Manuf Technol 77(9–12):1741–1750CrossRefGoogle Scholar
  19. 19.
    Pandey AK, Tiwari K, Dubey AK (2014) Optimization of the process parameters in micro-electric discharge machining using response surface methodology and genetic algorithm. Int J Sci Res Publi 4(9):1–5Google Scholar
  20. 20.
    Jeong YH, HanYoo B, Lee HU, Min BK, Cho D-W, Lee SJ (2009) Deburring microfeatures using micro-EDM. J Mater Process Technol 209(14):5399–5406CrossRefGoogle Scholar
  21. 21.
    Yeo S, Murali M, Cheah H (2004) Magnetic field assisted micro electro-discharge machining. J Micromech Microeng 14(11):1526–1529CrossRefGoogle Scholar
  22. 22.
    Zhang L, Tong H, Li Y (2015) Precision machining of micro tool electrodes in micro EDM for drilling array micro holes. Precision Eng 39:100–106CrossRefGoogle Scholar
  23. 23.
    Jahan M, Wong Y, Rahman M (2012) Evaluation of the effectiveness of low frequency workpiece vibration in deep-hole micro-EDM drilling of tungsten carbide. J Manuf Processes 14(3):343–359CrossRefGoogle Scholar
  24. 24.
    Li MS, Chi GX, Wang ZL, Wang YK, Li D (2009) Micro electrical discharge machining of small hole in TC4 alloy. Trans Nonferrous Met Soc China 19:s434–s439CrossRefGoogle Scholar
  25. 25.
    Saxena KK, Agarwal S, Khare SK (2016) Surface characterization, material removal mechanism and material migration study of micro EDM process on conductive SiC. Procedia CIRP 42:179–184CrossRefGoogle Scholar
  26. 26.
    Fu Y, Miyamoto T, Natsu W, Zhao W, Yu Z (2016) Study on influence of electrode material on hole drilling in micro-EDM. Procedia CIRP 42:516–520CrossRefGoogle Scholar
  27. 27.
    Peng Z, Wang Z, Dong Y, Chen H (2010) Development of a reversible machining method for fabrication of microstructures by using micro-EDM. J Mater Process Technol 210(1):129–136CrossRefGoogle Scholar
  28. 28.
    Kunieda M, Lauwers B, Rajurkar K, Schumacher B (2005) Advancing EDM through fundamental insight into the process. CIRP Ann 54(2):64–87CrossRefGoogle Scholar
  29. 29.
    Masuzawa T (2000) State of the art of micromachining. CIRP Ann 49(2):473–488CrossRefGoogle Scholar
  30. 30.
    Wang AC, Yan BH, Li XT, Huang FY (2002) Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining. Int J Mach Tools Manuf 42(8):915–923CrossRefGoogle Scholar
  31. 31.
    Chern GL, Chuang Y (2006) Study on vibration-EDM and mass punching of micro-holes. J Mater Process Technol 180(1–3):151–160CrossRefGoogle Scholar
  32. 32.
    Endo T, Tsujimoto T, Mitsui K (2008) Study of vibration-assisted micro-EDM-the effect of vibration on machining time and stability of discharge. Precision Eng 32(4):269–277CrossRefGoogle Scholar
  33. 33.
    Prihandana GS, Mahardika M, Hamdi M, Wong Y, Mitsui K (2009) Effect of micro-powder suspension and ultrasonic vibration of dielectric fluid in micro-EDM processes-Taguchi approach. Int J Mach Tools Manuf 49(12–13):1035–1041CrossRefGoogle Scholar
  34. 34.
    Liew PJ, Yan J, Kuriyagawa T (2014) Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM. Int J Mach Tools Manuf 76:13–20CrossRefGoogle Scholar
  35. 35.
    Yeo S, Tan P, Kurnia W (2007) Effects of powder additives suspended in dielectric on crater characteristics for micro electrical discharge machining. J Micromech Microeng 17(11):N91–N98CrossRefGoogle Scholar
  36. 36.
    Egashira K, Morita Y, Hattori Y (2010) Electrical discharge machining of submicron holes using ultrasmall-diameter electrodes. Precision Eng 34(1):139–144CrossRefGoogle Scholar
  37. 37.
    Han F, Yamada Y, Kawakami T, Kunieda M (2006) Experimental attempts of sub-micrometer order size machining using micro-EDM. Precision Eng 30(2):123–131CrossRefGoogle Scholar
  38. 38.
    Abbas NM, Solomon DG, Bahari MF (2007) A review on current research trends in electrical discharge machining (EDM). Int J Mach Tools Manuf 47(7–8):1214–1228CrossRefGoogle Scholar
  39. 39.
    Zou R, Yu Z, Yan C, Li J, Liu X, Xu W (2018) Micro electrical discharge machining in nitrogen plasma jet. Precision Eng 51:198–207CrossRefGoogle Scholar
  40. 40.
    Allen D, Lecheheb A (1996) Micro electro-discharge machining of ink jet nozzles: optimum selection of material and machining parameters. J Mater Process Technol 58(1):53–66CrossRefGoogle Scholar
  41. 41.
    Son S, Lim H, Kumar A, Rahman M (2007) Influences of pulsed power condition on the machining properties in micro EDM. J Mater Process Technol 190(1–3):73–76CrossRefGoogle Scholar
  42. 42.
    Wang Y, Chen X, Wang Z, Dong S (2018) Fabrication of micro gear with intact tooth profile by micro wire electrical discharge machining. J Mater Process Technol 252:137–147CrossRefGoogle Scholar
  43. 43.
    Ferraris E, Reynaerts D, Lauwers B (2011) Micro-EDM process investigation and comparison performance of Al3O2 and ZrO2 based ceramic composites. CIRP Ann 60(1):235–238CrossRefGoogle Scholar
  44. 44.
    Huang H, Yan J (2016) Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool. J Alloy Compd 688:14–21CrossRefGoogle Scholar
  45. 45.
    Liu HS, Yan BH, Chen CL, Huang FY (2006) Application of micro-EDM combined with high-frequency dither grinding to micro-hole machining. Int J Mach Tools Manuf 46(1):80–87CrossRefGoogle Scholar
  46. 46.
    Yeo SH, Tan PC, Aligiri E, Tor SB, Loh NH (2009) Processing of zirconium-based bulk metallic glass (BMG) using micro electrical discharge machining (micro-EDM). Mater Manuf Processes 24(12):1242–1248CrossRefGoogle Scholar
  47. 47.
    Jahan M, Wong Y, Rahman M (2009) A study on the fine-finish die-sinking micro-EDM of tungsten carbide using different electrode materials. J Mater Process Technol 209(8):3956–3967CrossRefGoogle Scholar
  48. 48.
    Dong S, Wang Z, Wang Y, Liu H (2016) An experimental investigation of enhancement surface quality of micro-holes for Be–Cu alloys using micro-EDM with multi-diameter electrode and different dielectrics. Procedia CIRP 42:257–262CrossRefGoogle Scholar
  49. 49.
    Bamberg E, Heamawatanachai S (2009) Orbital electrode actuation to improve efficiency of drilling micro-holes by micro-EDM. J Mater Process Technol 209(4):1826–1834CrossRefGoogle Scholar
  50. 50.
    Yukui W, Xiang C, Weimin G, Zhenlong W, Cheng G (2016) Complex rotary structures machined by micro-WEDM. Procedia CIRP 42:743–747CrossRefGoogle Scholar
  51. 51.
    Murray J, Zdebski D, Clare A (2012) Workpiece debris deposition on tool electrodes and secondary discharge phenomena in micro-EDM. J Mater Process Technol 212(7):1537–1547CrossRefGoogle Scholar
  52. 52.
    Fu X, Zhang Y, Zhang Q, Zhang J (2013) Research on piezoelectric self-adaptive micro-EDM. Procedia CIRP 6:303–308CrossRefGoogle Scholar
  53. 53.
    Trych A (2013) Further study of carbon fibres electrodes in micro electrical discharge machining. Procedia CIRP 6:309–313CrossRefGoogle Scholar
  54. 54.
    Plaza S, Sanchez JA, Perez E, Gil R, Izquierdo B, Ortega N, Pombo I (2014) Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode. Precision Eng 38(4):821–827CrossRefGoogle Scholar
  55. 55.
    Maradia U, Knaak R, Dal Busco W, Boccadoro M, Wegener K (2015) A strategy for low electrode wear in meso–micro-EDM. Precision Eng 42:302–310CrossRefGoogle Scholar
  56. 56.
    Koyano T, Sugata Y, Hosokawa A, Furumoto T (2017) Micro electrical discharge machining using high electric resistance electrodes. Precision Eng 47:480–486CrossRefGoogle Scholar
  57. 57.
    Mlynarczyk P, Krajcarz D, Bańkowski D (2017) The selected properties of the micro electrical discharge alloying process using tungsten electrode on aluminium. Procedia Eng 192:603–608CrossRefGoogle Scholar
  58. 58.
    Qian J, Yang F, Wang J, Lauwers B, Reynaerts D (2015) Material removal mechanism in low-energy micro-EDM process. CIRP Ann 64(1):225–228CrossRefGoogle Scholar
  59. 59.
    Pellicer N, Ciurana J, Ozel T (2009) Influence of process parameters and electrode geometry on feature micro-accuracy in electro discharge machining of tool steel. Mater Manuf Processes 24(12):1282–1289CrossRefGoogle Scholar
  60. 60.
    Natarajan N, Arunachalam R (2011) Optimization of micro-EDM with multiple performance characteristics using Taguchi method and Grey relational analysis. J Sci Ind Res 70(7):500–505Google Scholar
  61. 61.
    Ay M, Çaydaş U, Hasçalık A (2013) Optimization of micro-EDM drilling of Inconel 718 superalloy. Int J Adv Manuf Technol 66(5–8):1015–1023CrossRefGoogle Scholar
  62. 62.
    Tiwary A, Pradhan B, Bhattacharyya B (2014) Application of multi-criteria decision making methods for selection of micro-EDM process parameters. Adv Manuf 2(3):251–258CrossRefGoogle Scholar
  63. 63.
    Manivannan R, Kumar MP (2016) Multi-response optimization of micro-EDM process parameters on AISI304 steel using TOPSIS. J Mech Sci Technol 30(1):137–144CrossRefGoogle Scholar
  64. 64.
    Bhosle RB, Sharma S (2017) Multi-performance optimization of micro-EDM drilling process of Inconel 600 alloy. Mater Today Proc 4(2):1988–1997CrossRefGoogle Scholar
  65. 65.
    Manivannan R, Kumar MP (2017) Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method. Mater Manuf Processes 32(2):209–215CrossRefGoogle Scholar
  66. 66.
    Sapkal SU, Jagtap PS (2018) Optimization of micro EDM drilling process parameters for Titanium Alloy by rotating electrode. Procedia Manuf 20:119–126CrossRefGoogle Scholar
  67. 67.
    Pradhan B, Bhattacharyya B (2009) Modelling of micro-electrodischarge machining during machining of titanium alloy Ti-6Al-4V using response surface methodology and artificial neural network algorithm. Proc Inst Mech Eng, Part B: J Eng Manuf 223(6):683–693CrossRefGoogle Scholar
  68. 68.
    Somashekhar K, Ramachandran N, Mathew J (2009) Modeling and optimization of process parameters in micro Wire EDM by Genetic Algorithm. Adv Mater Res 76–78:566–570CrossRefGoogle Scholar
  69. 69.
    Zhang L, Jia Z, Wang F, Liu W (2010) A hybrid model using supporting vector machine and multi-objective genetic algorithm for processing parameters optimization in micro-EDM. Int J Adv Manuf Technol 51(5–8):575–586CrossRefGoogle Scholar
  70. 70.
    Somashekhar K, Ramachandran N, Mathew J (2010) Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Mater Manuf Processes 25(6):467–475CrossRefGoogle Scholar
  71. 71.
    Somashekhar K, Mathew J, Ramachandran N (2011) Multi-objective optimization of micro wire electric discharge machining parameters using grey relational analysis with Taguchi method. Proc Inst Mech Eng, Part C: J Mech Eng Sci 225(7):1742–1753CrossRefGoogle Scholar
  72. 72.
    Somashekhar K, Mathew J, Ramachandran N (2012) A feasibility approach by simulated annealing on optimization of micro-wire electric discharge machining parameters. Int J Adv Manuf Technol 61(9–12):1209–1213CrossRefGoogle Scholar
  73. 73.
    Nirala C, Reddy B, Saha P (2013) Optimization of process parameters in micro electro-discharge drilling [micro EDM-drilling]: a Taguchi approach. Adv Mater Res 622–623:30–34Google Scholar
  74. 74.
    Sivaprakasam P, Hariharan P, Gowri S (2013) Optimization of micro-WEDM process of aluminum matrix composite (A413-B4C): a response surface approach. Mater Manuf Processes 28(12):1340–1347CrossRefGoogle Scholar
  75. 75.
    Jithin S, Kuriachen B, Mathew J (2013) Multi-objective optimization of micro ED milling of Ti-6Al-4V using genetic algorithm (GA). In: International conference on precision, meso, micro and nano engineering (COPEN 2013), India, pp 157–163, 13–15 Dec 2013Google Scholar
  76. 76.
    Suganthi XH, Natarajan U, Sathiyamurthy S, Chidambaram K (2013) Prediction of quality responses in micro-EDM process using an adaptive neuro-fuzzy inference system (ANFIS) model. Int J Adv Manuf Technol 68:339–347CrossRefGoogle Scholar
  77. 77.
    Maity K, Mishra H (2016) ANN modelling and Elitist teaching learning approach for multi-objective optimization of µ-EDM. J Intell Manuf Scholar
  78. 78.
    Meena VK, Azad MS, Singh S, Singh N (2017) Micro-EDM multiple parameter optimization for Cp titanium. Int J Adv Manuf Technol 89(1–4):897–904CrossRefGoogle Scholar
  79. 79.
    Upadhyay A, Prakash V, Sharma V (2018) Optimizing material removal rate using artificial neural network for micro-EDM. In: Design and optimization of mechanical engineering products, IGI Global, pp 209–233Google Scholar
  80. 80.
    Abidi MH, Al-Ahmari AM, Umer U, Rasheed MS (2018) Multi-objective optimization of micro-electrical discharge machining of nickel-titanium-based shape memory alloy using MOGA-II. Measurement 125:336–349CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Soumava Boral
    • 1
  • Sarabjeet Singh Sidhu
    • 2
  • Prasenjit Chatterjee
    • 3
    Email author
  • Shankar Chakraborty
    • 4
  • Agam Gugaliya
    • 1
  1. 1.Subir Chowdhury School of Quality and ReliabilityIIT KharagpurKharagpurIndia
  2. 2.Department of Mechanical EngineeringBeant College of Engineering and TechnologyGurdaspurIndia
  3. 3.Department of Mechanical EngineeringMCKV Institute of Engineering HowrahHowrahIndia
  4. 4.Department of Production EngineeringJadavpur University KolkataKolkataIndia

Personalised recommendations