Skip to main content

C. elegans Locomotion: Finding Balance in Imbalance

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1112)

Abstract

The excitation-inhibition (E-I) imbalance in neural circuits represents a hallmark of several neuropsychiatric disorders. The tiny nematode Caenorhabditis elegans has emerged as an excellent system to study the molecular mechanisms underlying this imbalance in neuronal circuits. The C. elegans body wall muscles receive inputs from both excitatory cholinergic and inhibitory GABAergic motor neurons at neuromuscular junctions (NMJ), making it an excellent model for studying the genetic and molecular mechanisms required for maintaining E-I balance at the NMJ. The cholinergic neurons form dyadic synapses wherein they synapse onto ipsilateral body wall muscles allowing for muscle contraction as well as onto GABAergic motor neurons that in turn synapse on the contralateral body wall muscles causing muscle relaxation. An alternating wave of contraction and relaxation mediated by excitatory and inhibitory signals maintains locomotion in C. elegans. This locomotory behavior requires an intricate balance between the excitatory cholinergic signaling and the inhibitory GABAergic signaling mechanisms.

Studies on the C. elegans NMJ have provided insights into several molecular mechanisms that could regulate this balance in neural circuits. This review provides a discussion on multiple genetic factors including neuropeptides and their receptors, cell adhesion molecules, and other molecular pathways that have been associated with maintaining E-I balance in C. elegans motor circuits. Further, it also discusses the implications of these studies that could help us in understanding the role of E-I balance in mammalian neural circuits and how changes in this balance could give rise to brain disorders.

Keywords

  • Excitation
  • Inhibition
  • Acetylcholine
  • GABA
  • NMJ
  • C. elegans

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Artan M, Jeong DE, Lee D, Kim YI, Son HG, Husain Z, Kim J, Altintas O, Kim K, Alcedo J, Lee SJ (2016) Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides. Genes Dev 30:1047–1057

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee N, Bhattacharya R, Gorczyca M, Collins KM, Francis MM (2017) Local neuropeptide signaling modulates serotonergic transmission to shape the temporal organization of C. elegans egg-laying behavior. PLoS Genet 13:e1006697

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Bargmann CI (2012) Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–465

    CrossRef  CAS  PubMed  Google Scholar 

  • Bargmann CI, Horvitz HR (1991) Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7:729–742

    CrossRef  CAS  PubMed  Google Scholar 

  • Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527

    CrossRef  CAS  PubMed  Google Scholar 

  • Bhardwaj A, Thapliyal S, Dahiya Y, Babu K (2018) FLP-18 functions through the G-protein-coupled receptors NPR-1 and NPR-4 to modulate reversal length in Caenorhabditis elegans. J Neurosci Off J Soc Neurosci 38:4641–4654

    CrossRef  CAS  Google Scholar 

  • Blackmore M, Letourneau PC (2006) L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. J Neurobiol 66:1564–1583

    CrossRef  CAS  PubMed  Google Scholar 

  • Braeckman BP, Vanfleteren JR (2007) Genetic control of longevity in C. elegans. Exp Gerontol 42:90–98

    CrossRef  CAS  PubMed  Google Scholar 

  • Braunewell KH (2005) The darker side of Ca2+ signaling by neuronal Ca2+-sensor proteins: from Alzheimer’s disease to cancer. Trends Pharmacol Sci 26:345–351

    CrossRef  CAS  PubMed  Google Scholar 

  • Braunewell KH, Gundelfinger ED (1999) Intracellular neuronal calcium sensor proteins: a family of EF-hand calcium-binding proteins in search of a function. Cell Tissue Res 295:1–12

    CrossRef  CAS  PubMed  Google Scholar 

  • Bretscher AJ, Kodama-Namba E, Busch KE, Murphy RJ, Soltesz Z, Laurent P, de Bono M (2011) Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69:1099–1113

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgoyne RD, Haynes LP (2012) Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 5:2

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavallaro U, Dejana E (2011) Adhesion molecule signalling: not always a sticky business. Nat Rev Mol Cell Biol 12:189–197

    CrossRef  CAS  PubMed  Google Scholar 

  • Chalasani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI (2010) Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nat Neurosci 13:615–621

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalfie M, Sulston JE, White JG, Southgate E, Thomson JN, Brenner S (1985) The neural circuit for touch sensitivity in Caenorhabditis elegans. J Neurosci Off J Soc Neurosci 5:956–964

    CrossRef  CAS  Google Scholar 

  • Chang YJ, Burton T, Ha L, Huang Z, Olajubelo A, Li C (2015) Modulation of locomotion and reproduction by FLP neuropeptides in the nematode Caenorhabditis elegans. PLoS One 10:e0135164

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen YC, Chen HJ, Tseng WC, Hsu JM, Huang TT, Chen CH, Pan CL (2016) A C. elegans thermosensory circuit regulates longevity through crh-1/CREB-dependent flp-6 neuropeptide signaling. Dev Cell 39(2):209–223

    CrossRef  CAS  PubMed  Google Scholar 

  • Cheng A, McDonald NA, Connolly CN (2005) Cell surface expression of 5-hydroxytryptamine type 3 receptors is promoted by RIC-3. J Biol Chem 280:22502–22507

    CrossRef  CAS  PubMed  Google Scholar 

  • Cheong MC, Artyukhin AB, You YJ, Avery L (2015) An opioid-like system regulating feeding behavior in C. elegans. elife 4:e06683

    CrossRef  PubMed Central  CAS  Google Scholar 

  • Chih B, Engelman H, Scheiffele P (2005) Control of excitatory and inhibitory synapse formation by neuroligins. Science 307:1324–1328

    CrossRef  CAS  PubMed  Google Scholar 

  • Cornils A, Gloeck M, Chen Z, Zhang Y, Alcedo J (2011) Specific insulin-like peptides encode sensory information to regulate distinct developmental processes. Development 138:1183–1193

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Cremer H, Chazal G, Goridis C, Represa A (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8:323–335

    CrossRef  CAS  PubMed  Google Scholar 

  • Culetto E, Baylis HA, Richmond JE, Jones AK, Fleming JT, Squire MD, Lewis JA, Sattelle DB (2004) The Caenorhabditis elegans unc-63 gene encodes a levamisole-sensitive nicotinic acetylcholine receptor alpha subunit. J Biol Chem 279:42476–42483

    CrossRef  CAS  PubMed  Google Scholar 

  • Culotti JG, Russell RL (1978) Osmotic avoidance defective mutants of the nematode Caenorhabditis elegans. Genetics 90:243–256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions at the synapse. Nat Rev Neurosci 8:206–220

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • de Bono M, Maricq AV (2005) Neuronal substrates of complex behaviors in C. elegans. Annu Rev Neurosci 28:451–501

    CrossRef  PubMed  CAS  Google Scholar 

  • Delaney CE, Chen AT, Graniel JV, Dumas KJ, Hu PJ (2017) A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development 144:1273–1282

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler SA, Meier JC (2008) E-I balance and human diseases – from molecules to networking. Front Mol Neurosci 1:2

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Engel AG, Ohno K, Milone M, Wang HL, Nakano S, Bouzat C, Pruitt JN II, Hutchinson DO, Brengman JM, Bren N, Sieb JP, Sine SM (1996) New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum Mol Genet 5:1217–1227

    CrossRef  CAS  PubMed  Google Scholar 

  • Flaherty KM, Zozulya S, Stryer L, McKay DB (1993) Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75:709–716

    CrossRef  CAS  PubMed  Google Scholar 

  • Fleming JT, Squire MD, Barnes TM, Tornoe C, Matsuda K, Ahnn J, Fire A, Sulston JE, Barnard EA, Sattelle DB, Lewis JA (1997) Caenorhabditis elegans levamisole resistance genes lev-1, unc-29, and unc-38 encode functional nicotinic acetylcholine receptor subunits. J Neurosci Off J Soc Neurosci 17:5843–5857

    CrossRef  CAS  Google Scholar 

  • Francis MM, Evans SP, Jensen M, Madsen DM, Mancuso J, Norman KR, Maricq AV (2005) The Ror receptor tyrosine kinase CAM-1 is required for ACR-16-mediated synaptic transmission at the C. elegans neuromuscular junction. Neuron 46:581–594

    CrossRef  CAS  PubMed  Google Scholar 

  • Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM (2004) Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–1026

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Halevi S, McKay J, Palfreyman M, Yassin L, Eshel M, Jorgensen E, Treinin M (2002) The C. elegans ric-3 gene is required for maturation of nicotinic acetylcholine receptors. EMBO J 21:1012–1020

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Halevi S, Yassin L, Eshel M, Sala F, Sala S, Criado M, Treinin M (2003) Conservation within the RIC-3 gene family. Effectors of mammalian nicotinic acetylcholine receptor expression. J Biol Chem 278:34411–34417

    CrossRef  CAS  PubMed  Google Scholar 

  • Hansen SM, Berezin V, Bock E (2008) Signaling mechanisms of neurite outgrowth induced by the cell adhesion molecules NCAM and N-cadherin. Cell Mol Life Sci 65:3809–3821

    CrossRef  CAS  PubMed  Google Scholar 

  • Harris G, Mills H, Wragg R, Hapiak V, Castelletto M, Korchnak A, Komuniecki RW (2010) The monoaminergic modulation of sensory-mediated aversive responses in Caenorhabditis elegans requires glutamatergic/peptidergic cotransmission. J Neurosci Off J Soc Neurosci 30:7889–7899

    CrossRef  CAS  Google Scholar 

  • Hedgecock EM, Russell RL (1975) Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. Proc Natl Acad Sci U S A 72:4061–4065

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hintsch G, Zurlinden A, Meskenaite V, Steuble M, Fink-Widmer K, Kinter J, Sonderegger P (2002) The calsyntenins – a family of postsynaptic membrane proteins with distinct neuronal expression patterns. Mol Cell Neurosci 21:393–409

    CrossRef  CAS  PubMed  Google Scholar 

  • Hirano S, Takeichi M (2012) Cadherins in brain morphogenesis and wiring. Physiol Rev 92:597–634

    CrossRef  CAS  PubMed  Google Scholar 

  • Hu Z, Pym EC, Babu K, Vashlishan Murray AB, Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71:92–102

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Vashlishan-Murray AB, Kaplan JM (2015) NLP-12 engages different UNC-13 proteins to potentiate tonic and evoked release. J Neurosci Off J Soc Neurosci 35:1038–1042

    CrossRef  CAS  Google Scholar 

  • Hung WL, Wang Y, Chitturi J, Zhen M (2014) A Caenorhabditis elegans developmental decision requires insulin signaling-mediated neuron-intestine communication. Development 141:1767–1779

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda DD, Duan Y, Matsuki M, Kunitomo H, Hutter H, Hedgecock EM, Iino Y (2008) CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:5260–5265

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72:231–243

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AK, Sattelle DB (2004) Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode, Caenorhabditis elegans. Bioessays 26:39–49

    CrossRef  CAS  PubMed  Google Scholar 

  • Jospin M, Qi YB, Stawicki TM, Boulin T, Schuske KR, Horvitz HR, Bessereau JL, Jorgensen EM, Jin Y (2009) A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 7:e1000265

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Kao G, Nordenson C, Still M, Ronnlund A, Tuck S, Naredi P (2007) ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells. Cell 128:577–587

    CrossRef  CAS  PubMed  Google Scholar 

  • Kaplan JM, Horvitz HR (1993) A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc Natl Acad Sci U S A 90:2227–2231

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko J, Fuccillo MV, Malenka RC, Sudhof TC (2009) LRRTM2 functions as a neurexin ligand in promoting excitatory synapse formation. Neuron 64:791–798

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Konecna A, Frischknecht R, Kinter J, Ludwig A, Steuble M, Meskenaite V, Indermuhle M, Engel M, Cen C, Mateos JM, Streit P, Sonderegger P (2006) Calsyntenin-1 docks vesicular cargo to kinesin-1. Mol Biol Cell 17:3651–3663

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lansdell SJ, Gee VJ, Harkness PC, Doward AI, Baker ER, Gibb AJ, Millar NS (2005) RIC-3 enhances functional expression of multiple nicotinic acetylcholine receptor subtypes in mammalian cells. Mol Pharmacol 68:1431–1438

    CrossRef  CAS  PubMed  Google Scholar 

  • Laurent P, Soltesz Z, Nelson GM, Chen C, Arellano-Carbajal F, Levy E, de Bono M (2015) Decoding a neural circuit controlling global animal state in C. elegans. elife 4:4

    CrossRef  CAS  Google Scholar 

  • Lei M, Xu H, Li Z, Wang Z, O’Malley TT, Zhang D, Walsh DM, Xu P, Selkoe DJ, Li S (2016) Soluble Abeta oligomers impair hippocampal LTP by disrupting glutamatergic/GABAergic balance. Neurobiol Dis 85:111–121

    CrossRef  CAS  PubMed  Google Scholar 

  • Leinwand SG, Chalasani SH (2013) Neuropeptide signaling remodels chemosensory circuit composition in Caenorhabditis elegans. Nat Neurosci 16:1461–1467

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinwand SG, Chalasani SH (2014) From genes to circuits and behaviors: neuropeptides expand the coding potential of the nervous system. WormBook 3:e27730

    Google Scholar 

  • Lewis JA, Wu CH, Berg H, Levine JH (1980) The genetics of levamisole resistance in the nematode Caenorhabditis elegans. Genetics 95:905–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Kim K (2008) Neuropeptides. WormBook 25:1–36

    CrossRef  Google Scholar 

  • Li C, Timbers TA, Rose JK, Bozorgmehr T, McEwan A, Rankin CH (2013) The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans. Learn Mem 20:103–108

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Linhoff MW, Lauren J, Cassidy RM, Dobie FA, Takahashi H, Nygaard HB, Airaksinen MS, Strittmatter SM, Craig AM (2009) An unbiased expression screen for synaptogenic proteins identifies the LRRTM protein family as synaptic organizers. Neuron 61:734–749

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Mann EO, Mody I (2008) The multifaceted role of inhibition in epilepsy: seizure-genesis through excessive GABAergic inhibition in autosomal dominant nocturnal frontal lobe epilepsy. Curr Opin Neurol 21:155–160

    CrossRef  CAS  PubMed  Google Scholar 

  • McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI (2011) Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477:321–325

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Missler M, Sudhof TC, Biederer T (2012) Synaptic cell adhesion. Cold Spring Harb Perspect Biol 4:a005694

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Mori I, Ohshima Y (1995) Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376:344–348

    CrossRef  CAS  PubMed  Google Scholar 

  • Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    CrossRef  CAS  PubMed  Google Scholar 

  • Nacher J, Guirado R, Castillo-Gomez E (2013) Structural plasticity of interneurons in the adult brain: role of PSA-NCAM and implications for psychiatric disorders. Neurochem Res 38:1122–1133

    CrossRef  CAS  PubMed  Google Scholar 

  • Nagy S, Tramm N, Sanders J, Iwanir S, Shirley IA, Levine E, Biron D (2014) Homeostasis in C. elegans sleep is characterized by two behaviorally and genetically distinct mechanisms. elife 3:e04380

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Nath RD, Chow ES, Wang H, Schwarz EM, Sternberg PW (2016) C. elegans stress-induced sleep emerges from the collective action of multiple neuropeptides. Curr Biol 26:2446–2455

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nathoo AN, Moeller RA, Westlund BA, Hart AC (2001) Identification of neuropeptide-like protein gene families in Caenorhabditis elegans and other species. Proc Natl Acad Sci U S A 98:14000–14005

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87:684–698

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MD, Trojanowski NF, George-Raizen JB, Smith CJ, Yu CC, Fang-Yen C, Raizen DM (2013) The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nat Commun 4:2846

    CrossRef  CAS  PubMed  Google Scholar 

  • Ohtsuka K, Suzuki T (2000) Roles of molecular chaperones in the nervous system. Brain Res Bull 53:141–146

    CrossRef  CAS  PubMed  Google Scholar 

  • Petrash HA, Philbrook A, Haburcak M, Barbagallo B, Francis MM (2013) ACR-12 ionotropic acetylcholine receptor complexes regulate inhibitory motor neuron activity in Caenorhabditis elegans. J Neurosci Off J Soc Neurosci 33:5524–5532

    CrossRef  CAS  Google Scholar 

  • Pettem KL, Yokomaku D, Luo L, Linhoff MW, Prasad T, Connor SA, Siddiqui TJ, Kawabe H, Chen F, Zhang L, Rudenko G, Wang YT, Brose N, Craig AM (2013) The specific alpha-neurexin interactor calsyntenin-3 promotes excitatory and inhibitory synapse development. Neuron 80:113–128

    CrossRef  CAS  PubMed  Google Scholar 

  • Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001) Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 15:672–686

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu XB, Shao YM, Miao S, Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol Life Sci 63:2560–2570

    CrossRef  CAS  PubMed  Google Scholar 

  • Rand JB (2007) Acetylcholine. WormBook 30:1–21

    Google Scholar 

  • Reboul J, Vaglio P, Tzellas N, Thierry-Mieg N, Moore T, Jackson C, Shin-i T, Kohara Y, Thierry-Mieg D, Thierry-Mieg J, Lee H, Hitti J, Doucette-Stamm L, Hartley JL, Temple GF, Brasch MA, Vandenhaute J, Lamesch PE, Hill DE, Vidal M (2001) Open-reading-frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat Genet 27:332–336

    CrossRef  CAS  PubMed  Google Scholar 

  • Richmond JE, Jorgensen EM (1999) One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat Neurosci 2:791–797

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Safdie G, Liewald JF, Kagan S, Battat E, Gottschalk A, Treinin M (2016) RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle. Mol Biol Cell 27:2994–3003

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanes JR, Yamagata M (2009) Many paths to synaptic specificity. Annu Rev Cell Dev Biol 25:161–195

    CrossRef  CAS  PubMed  Google Scholar 

  • Sassa T, Murayama T, Maruyama IN (2013) Strongly alkaline pH avoidance mediated by ASH sensory neurons in C. elegans. Neurosci Lett 555:248–252

    CrossRef  CAS  PubMed  Google Scholar 

  • Seaton G, Hogg EL, Jo J, Whitcomb DJ, Cho K (2011) Sensing change: the emerging role of calcium sensors in neuronal disease. Semin Cell Dev Biol 22:530–535

    CrossRef  CAS  PubMed  Google Scholar 

  • Shapiro L, Love J, Colman DR (2007) Adhesion molecules in the nervous system: structural insights into function and diversity. Annu Rev Neurosci 30:451–474

    CrossRef  CAS  PubMed  Google Scholar 

  • Sheng L, Leshchyns’ka I, Sytnyk V (2013) Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 11:94

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Sherman MY, Goldberg AL (2001) Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32

    CrossRef  CAS  PubMed  Google Scholar 

  • Siddiqui TJ, Pancaroglu R, Kang Y, Rooyakkers A, Craig AM (2010) LRRTMs and neuroligins bind neurexins with a differential code to cooperate in glutamate synapse development. J Neurosci Off J Soc Neurosci 30:7495–7506

    CrossRef  CAS  Google Scholar 

  • Stawicki TM, Takayanagi-Kiya S, Zhou K, Jin Y (2013) Neuropeptides function in a homeostatic manner to modulate excitation-inhibition imbalance in C. elegans. PLoS Genet 9:e1003472

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Stitzel JA (2008) Naturally occurring genetic variability in the nicotinic acetylcholine receptor alpha4 and alpha7 subunit genes and phenotypic diversity in humans and mice. Front Biosci 13:477–491

    CrossRef  CAS  PubMed  Google Scholar 

  • Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455:903–911

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Takayanagi-Kiya S, Jin Y (2016) Altered function of the DnaJ family cochaperone DNJ-17 modulates locomotor circuit activity in a Caenorhabditis elegans seizure model. G3 (Bethesda) 6:2165–2171

    CrossRef  CAS  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133

    CrossRef  CAS  PubMed  Google Scholar 

  • Thapliyal S, Ravindranath S, Babu K (2018a) Regulation of glutamate signaling in the sensorimotor circuit by CASY-1A/calsyntenin in Caenorhabditis elegans. Genetics 208:1553–1564

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Thapliyal S, Vasudevan A, Dong Y, Bai J, Koushika SP, Babu K (2018b) The C-terminal of CASY-1/Calsyntenin regulates GABAergic synaptic transmission at the Caenorhabditis elegans neuromuscular junction. PLoS Genet 14:e1007263

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Togashi H, Abe K, Mizoguchi A, Takaoka K, Chisaka O, Takeichi M (2002) Cadherin regulates dendritic spine morphogenesis. Neuron 35:77–89

    CrossRef  CAS  PubMed  Google Scholar 

  • Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, Takeichi M (2006) Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. J Cell Biol 174:141–151

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Togashi H, Sakisaka T, Takai Y (2009) Cell adhesion molecules in the central nervous system. Cell Adhes Migr 3:29–35

    CrossRef  Google Scholar 

  • Touroutine D, Fox RM, Von Stetina SE, Burdina A, Miller DM III, Richmond JE (2005) acr-16 encodes an essential subunit of the levamisole-resistant nicotinic receptor at the Caenorhabditis elegans neuromuscular junction. J Biol Chem 280:27013–27021

    CrossRef  CAS  PubMed  Google Scholar 

  • Unwin N (2005) Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J Mol Biol 346:967–989

    CrossRef  CAS  PubMed  Google Scholar 

  • Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin superfamily: role in axon growth and guidance. Annu Rev Cell Dev Biol 13:425–456

    CrossRef  CAS  PubMed  Google Scholar 

  • Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70:817–821

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 275:327–348

    CrossRef  CAS  Google Scholar 

  • White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314:1–340

    CrossRef  CAS  Google Scholar 

  • Yasuda S, Tanaka H, Sugiura H, Okamura K, Sakaguchi T, Tran U, Takemiya T, Mizoguchi A, Yagita Y, Sakurai T, De Robertis EM, Yamagata K (2007) Activity-induced protocadherin arcadlin regulates dendritic spine number by triggering N-cadherin endocytosis via TAO2beta and p38 MAP kinases. Neuron 56:456–471

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, Sohal VS, Goshen I, Finkelstein J, Paz JT, Stehfest K, Fudim R, Ramakrishnan C, Huguenard JR, Hegemann P, Deisseroth K (2011) Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477:171–178

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou K, Cherra SJ III, Goncharov A, Jin Y (2017) Asynchronous cholinergic drive correlates with excitation-inhibition imbalance via a neuronal Ca2+ sensor protein. Cell Rep 19:1117–1129

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

ST was funded by the Council of Scientific and Industrial Research (CSIR) for a graduate fellowship. KB is an Intermediate Fellow of the Wellcome Trust- DBT India Alliance (Grant no. IA/I/12/1/500516) and thanks the Alliance for funding support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shruti Thapliyal or Kavita Babu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thapliyal, S., Babu, K. (2018). C. elegans Locomotion: Finding Balance in Imbalance. In: Chattopadhyay, K., Basu, S. (eds) Biochemical and Biophysical Roles of Cell Surface Molecules. Advances in Experimental Medicine and Biology, vol 1112. Springer, Singapore. https://doi.org/10.1007/978-981-13-3065-0_14

Download citation