Skip to main content

Inequalities for the Generalized k-g-Fractional Integrals in Terms of Double Integral Means

  • 605 Accesses

Part of the Trends in Mathematics book series (TM)

Abstract

In this chapter, we establish some inequalities for the k-g-fractional integrals of various subclasses of Lebesgue integrable functions in terms of double integral means. Some examples for the generalized left-sided and right-sided Riemann–Liouville fractional integrals of a function f with respect to another function g on \(\left[ a,b\right] \) and for general exponential fractional integrals are also given.

Keywords

  • Generalized Riemann–Liouville fractional integrals
  • Hadamard fractional integrals
  • Functions of bounded variation
  • Ostrowski-type inequalities
  • Trapezoid inequalities

1991 Mathematics Subject Classification

  • 26D15
  • 26D10
  • 26D07
  • 26A33

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-13-3013-1_1
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-981-13-3013-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   149.99
Price excludes VAT (USA)

References

  1. R.P. Agarwal, M.-J. Luo, R.K. Raina, On Ostrowski type inequalities. Fasc. Math. 56, 5–27 (2016)

    MathSciNet  MATH  Google Scholar 

  2. A. Aglić Aljinović, Montgomery identity and Ostrowski type inequalities for Riemann-Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp

    Google Scholar 

  3. T.M. Apostol, Mathematical Analysis, 2nd edn. (Addison-Wesley Publishing Company, 1975)

    Google Scholar 

  4. A.O. Akdemir, Inequalities of Ostrowski’s type for \(m\)- and \( (\alpha, m)\)-logarithmically convex functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16(2), 375–383 (2014)

    MathSciNet  MATH  Google Scholar 

  5. G.A. Anastassiou, Fractional representation formulae under initial conditions and fractional Ostrowski type inequalities. Demonstr. Math. 48(3), 357–378 (2015)

    MathSciNet  MATH  Google Scholar 

  6. G.A. Anastassiou, The reduction method in fractional calculus and fractional Ostrowski type inequalities. Indian J. Math. 56(3), 333–357 (2014)

    MathSciNet  MATH  Google Scholar 

  7. H. Budak, M.Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions whose local fractional derivatives are generalized \(s\)-convex in the second sense. J. Appl. Math. Comput. Mech. 15(4), 11–21 (2016)

    MathSciNet  CrossRef  Google Scholar 

  8. P. Cerone, S.S. Dragomir, Midpoint-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, (Chapman & Hall/CRC, Boca Raton, FL, 2000), pp. 135–200

    Google Scholar 

  9. S.S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38(11–12), 33–37 (1999)

    MathSciNet  CrossRef  Google Scholar 

  10. S.S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60(3), 495–508 (1999)

    MathSciNet  CrossRef  Google Scholar 

  11. S.S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation and applications. Kragujevac J. Math. 22, 13–19 (2000)

    MathSciNet  MATH  Google Scholar 

  12. S.S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation and applications. Math. Ineq. Appl. 4(1), 59–66 (2001). Preprint: RGMIA Res. Rep. Coll.2 (1999), Art. 7, [Online http://rgmia.org/papers/v2n1/v2n1-7.pdf]

  13. S.S. Dragomir, Some inequalities for functions of bounded variation with applications to Landau type results. Filomat 20(part 1), 23–33 (2006)

    MathSciNet  CrossRef  Google Scholar 

  14. S.S. Dragomir, Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. (Basel) 91(5), 450–460 (2008)

    MathSciNet  CrossRef  Google Scholar 

  15. S.S. Dragomir, Refinements of the Ostrowski inequality in terms of the cumulative variation and applications. Analysis(Berlin) 34(2), 223–240 (2014). Preprint: RGMIA Res. Rep. Coll.16, Art. 29 (2013) [Online http://rgmia.org/papers/v16/v16a29.pdf]

  16. S.S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results. Australian J. Math. Anal. Appl., 14(1), Article 1, pp. 1–287 (2017) [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex]

  17. S.S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20, Art. 48 (2017) [Online http://rgmia.org/papers/v20/v20a48.pdf]

  18. S.S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 20, Art. 58 (2017) [Online http://rgmia.org/papers/v20/v20a58.pdf]

  19. S.S. Dragomir, Further Ostrowski and trapezoid type inequalities for the generalized Riemann-Liouville fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 20, Art. 84 (2017) [Online http://rgmia.org/papers/v20/v20a84.pdf]

  20. S.S. Dragomir, Ostrowski and trapezoid type inequalities for the generalized \(k\)-\(g\)-fractional integrals of functions with bounded variation. RGMIA Res. Rep. Coll. 20, Art. 111 (2017) [Online http://rgmia.org/papers/v20/v20a111.pdf]

  21. S.S. Dragomir, Some inequalities for the generalized \(k\)-\( g \)-fractional integrals of functions under complex boundedness conditions. RGMIA Res. Rep. Coll. 20, Art. 119 (2017) [Online http://rgmia.org/papers/v20/v20a119.pdf]

  22. A. Guezane-Lakoud, F. Aissaoui, New fractional inequalities of Ostrowski type. Transylv. J. Math. Mech. 5(2), 103–106 (2013)

    MathSciNet  Google Scholar 

  23. A. Kashuri, R. Liko, Ostrowski type fractional integral inequalities for generalized \((s,m,\varphi )\)-preinvex functions. Aust. J. Math. Anal. Appl. 13(1), Art. 16, 11 pp (2016)

    Google Scholar 

  24. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0

    Google Scholar 

  25. M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejer, Dragomir-Agarwal and Pachpatte type Inequalities for convex functions via fractional integrals, Preprint arXiv:1701.00092

  26. M.A. Noor, K.I. Noor, S. Iftikhar, Fractional Ostrowski inequalities for harmonic \(h\)-preinvex functions. Facta Univ. Ser. Math. Inform. 31(2), 417–445 (2016)

    MathSciNet  MATH  Google Scholar 

  27. R.K. Raina, On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 21(2), 191–203 (2005)

    MATH  Google Scholar 

  28. M.Z. Sarikaya, H. Budak, Generalized Ostrowski type inequalities for local fractional integrals. Proc. Amer. Math. Soc. 145(4), 1527–1538 (2017)

    MathSciNet  MATH  Google Scholar 

  29. M.Z. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, submited (2017)

    Google Scholar 

  30. M.Z. Sarikaya, H. Filiz, Note on the Ostrowski type inequalities for fractional integrals. Vietnam J. Math. 42(2), 187–190 (2014)

    MathSciNet  CrossRef  Google Scholar 

  31. M.Z. Sarikaya, H. Yildirim, On generalization of the Riesz potential. Indian Jour. of Math. and Mathematical Sci. 3(2), 231–235 (2007)

    Google Scholar 

  32. E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl. 63(7), 1147–1154 (2012)

    MathSciNet  CrossRef  Google Scholar 

  33. M. Tunç, On new inequalities for \(h\)-convex functions via Riemann-Liouville fractional integration. Filomat 27(4), 559–565 (2013)

    MathSciNet  CrossRef  Google Scholar 

  34. M. Tunç, Ostrowski type inequalities for \(m\)- and \((\alpha, m)\)-geometrically convex functions via Riemann-Louville fractional integrals. Afr. Mat. 27(5–6), 841–850 (2016)

    MathSciNet  CrossRef  Google Scholar 

  35. H. Yildirim, Z. Kirtay, Ostrowski inequality for generalized fractional integral and related inequalities. Malaya J. Mat. 2(3), 322–329 (2014)

    MATH  Google Scholar 

  36. C. Yildiz, E, Özdemir, Z.S. Muhamet, New generalizations of Ostrowski-like type inequalities for fractional integrals. Kyungpook Math. J. 56(1), 161–172 (2016)

    MathSciNet  CrossRef  Google Scholar 

  37. H. Yue, Ostrowski inequality for fractional integrals and related fractional inequalities. Transylv. J. Math. Mech. 5(1), 85–89 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestru Sever Dragomir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Dragomir, S.S. (2018). Inequalities for the Generalized k-g-Fractional Integrals in Terms of Double Integral Means. In: Agarwal, P., Dragomir, S., Jleli, M., Samet, B. (eds) Advances in Mathematical Inequalities and Applications. Trends in Mathematics. Birkhäuser, Singapore. https://doi.org/10.1007/978-981-13-3013-1_1

Download citation