Skip to main content

Stochastic Frontier Analysis

  • Chapter
  • First Online:
Productivity and Efficiency Analysis

Abstract

Distance, revenue, cost and profit functions can always be written in the form of regression models with unobserved error terms representing statistical noise and different types of inefficiency. In practice, the noise components are almost always assumed to be random variables (i.e., stochastic). The associated frontiers are known as stochastic frontiers. This chapter explains how to estimate and draw inferences concerning the unknown parameters in so-called stochastic frontier models (SFMs). It then explains how the estimated parameters can be used to predict levels of efficiency and analyse productivity change. The focus is on maximum likelihood estimators and predictors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The dependent variable in the Aigner et al. (1977) model is an output, not the logarithm of an output. The dependent variable in the Battese and Corra (1977) model is a value, not the logarithm of a quantity. If there is no statistical noise and the dependent variable is either an output or a value, then \(u_{it}\) can no longer be interpreted as an output-oriented technical inefficiency effect.

  2. 2.

    The error term in (7.19) is a mean-corrected inefficiency effect, whereas the error term in (8.20) is a mean-corrected noise and inefficiency effect.

  3. 3.

    The n-th moment of the OLS residuals is \(s_n=\sum _t^T \sum _i^{I_t}\hat{e}_{it}^n/\sum _t^TI_t\) where \(\hat{e}_{it}\) denotes the it-th residual and \(I_t\) is the number of firms in the dataset in period t.

  4. 4.

    Elsewhere, these estimators are sometimes referred to as corrected ordinary least squares (COLS) estimators; see, for example, [Horrace and Schmidt 1996, p. 260] . In this book, the term COLS is reserved for LS estimators for the parameters in deterministic frontier models.

  5. 5.

    See, for example, [Coelli 1995, p. 250].

  6. 6.

    Schmidt and Lin (1984) describe their test as a ‘test of the existence of a frontier’.

  7. 7.

    See, for example, Stevenson (1980) , Battese and Coelli (1995) and Salas-Velasco (2018).

  8. 8.

    These equations follow from (A.48) and (A.51) in Appendix A.7. If the data are cross-section data and \(\mu =0\), then (8.28) reduces to equation (2) in Jondrow et al. (1982) .

  9. 9.

    Coelli (1995) attributes this result to Gouriéroux et al. (1982) . Those authors derive their results in the context of a linear regression model with a normally distributed error term. It is not obvious that their results carry over to the case of a (composite) error term that is not normally distributed.

  10. 10.

    In the present context, Bayes’s theorem actually says that \(p(\theta | X, y) = p(y | X, \theta )p(\theta |X)/p(y|X)\). However, it is notationally convenient, and common practice, to suppress the X.

  11. 11.

    One exception is the marginal likelihood given by \(p(y)= \int p(y|\theta )p(\theta )~d\theta \).

  12. 12.

    Primal and dual indices are computed using distance, revenue and cost functions. SFMs are underpinned by the assumption that these functions exist. However, their functional forms are generally unknown. Moreover, the variables in these functions are often unobserved and/or measured with error.

  13. 13.

    For a more complete list of assumptions, see Sect. 4.7.5.

  14. 14.

    Olson et al. (1980) refer to these estimators as corrected ordinary least squares (COLS) estimators. In this book, the term COLS is reserved for LS estimators for the parameters in deterministic frontier models.

References

  • Ackerberg D, Caves K, Frazer G (2015) Identification properties of recent production function estimators. Econometrica 83(6):2411–2451

    Article  Google Scholar 

  • Aigner D, Lovell C, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37

    Article  Google Scholar 

  • Ali M, Flinn J (1989) Profit efficiency among basmati rice producers in Pakistan Punjab. Am J Agric Econ 71(2):303–310

    Article  Google Scholar 

  • Almanidis P, Qian J, Sickles R (2014) Stochastic frontier models with bounded inefficiency. In: Sickles R (ed) Festschrift in Honor of Peter Schmidt: econometric methods and applications. Springer, Berlin

    Google Scholar 

  • Amsler C, O’Donnell C, Schmidt P (2017) Stochastic metafrontiers. Econ Rev 36(6–9):1007–1020

    Article  Google Scholar 

  • Assaf A, Gillen G, Tsionas E (2014) Understanding relative efficiency among airports: a general dynamic model for distinguishing technical and allocative efficiency. Transp Res Part B 70:18–34

    Article  Google Scholar 

  • Asteriou D, Hall S (2015) Applied econometrics. Palgrave Macmillan, New York

    Google Scholar 

  • Bandyopadhyay D, Das A (2006) On measures of technical inefficiency and production uncertainty in stochastic frontier production model with correlated error components. J Prod Anal 26(2):165–180

    Article  Google Scholar 

  • Battese G, Coelli T (1992) Frontier production functions, technical efficiency and panel data: with application to paddy farmers in India. J Prod Anal 3(1–2):153–169

    Article  Google Scholar 

  • Battese G, Coelli T (1993) A stochastic frontier production function incorporating a model for technical inefficiency effects. Working Papers in Econometrics and Applied Statistics 69, University of New England

    Google Scholar 

  • Battese G, Coelli T (1995) A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empirical Econ 20:325–332

    Article  Google Scholar 

  • Battese G, Corra G (1977) Estimation of a production frontier model: with application to the pastoral zone of Eastern Australia. Aust J Agric Econ 21(3):169–179

    Google Scholar 

  • Burns P, Weyman-Jones T (1996) Cost functions and cost efficiency in electricity distribution: a stochastic frontier approach. Bull Econ Res 48(1):44–64

    Article  Google Scholar 

  • Byma J, Tauer L (2007) Exploring the role of managerial ability in determining firm efficiency. Selected paper prepared for presentation at the American Agricultural Economics Association Annual Meeting, Portland, Oregon, 30–31 June

    Google Scholar 

  • Carta A, Steel M (2012) Modelling multi-output stochastic frontiers using copulas. Comput Stat Data Anal 56(11):3757–3773

    Article  Google Scholar 

  • Casella G, George E (1992) Explaining the Gibbs sampler. Am Stat 46(3):167–174

    Google Scholar 

  • Caudill S, Ford J (1993) Biases in frontier estimation due to heteroskedasticity. Econ Lett 41:17–20

    Article  Google Scholar 

  • Coelli T (1995) Estimators and hypothesis tests for a stochastic frontier function: a Monte Carlo analysis. J Prod Anal 6:247–268

    Article  Google Scholar 

  • Emvalomatis G (2012) Adjustment and unobserved heterogeneity in dynamic stochastic frontier models. J Prod Anal 37(1):7–16

    Article  Google Scholar 

  • Fan Y, Li Q, Weersink A (1996) Semiparametric estimation of stochastic production frontier models. J Bus Econ Stat 14(4):460–468

    Google Scholar 

  • Fernandez C, Osiewalski J, Steel M (1997) On the use of panel data in stochastic frontier models with improper priors. J Econ 79(1):169–93

    Article  Google Scholar 

  • GĂ³mez-DĂ©niz E, PĂ©rez-RodrĂ­guez J (2015) Closed-form solution for a bivariate distribution in stochastic frontier models with dependent errors. J Prod Anal 43(2):215–223

    Article  Google Scholar 

  • GouriĂ©roux C, Holly A, Monfort A (1982) Likelihood ratio test, Wald test, and Kuhn-Tucker test in linear models with inequality constraints on the regression parameters. Econometrica 50(1):63–80

    Article  Google Scholar 

  • Greene W (1990) A Gamma-distributed stochastic frontier model. J Econ 46(1–2):141–163

    Article  Google Scholar 

  • Greene W (2004) Reconsidering heterogeneity in panel data estimators of the stochastic frontier model. J Econ 126(2005):269–303

    Google Scholar 

  • Greene W (2005) Fixed and random effects in stochastic frontier models. J Prod Anal 23(1):7–32

    Article  Google Scholar 

  • Hajargasht G (2015) Stochastic frontiers with a Rayleigh distribution. J Prod Anal 44(2):199–208

    Article  Google Scholar 

  • Henderson D, Simar L (2005) A fully nonparametric stochastic frontier model for panel data. Department of Economics Working Paper 0519, State University of New York at Binghamton

    Google Scholar 

  • Henderson DJ, Parmeter CF (2015) A consistent bootstrap procedure for nonparametric symmetry tests. Econ Lett 131(C):78–82, https://doi.org/10.1016/j.econlet.2015.03, https://ideas.repec.org/a/eee/ecolet/v131y2015icp78-82.html

  • Herr A (2008) Cost and technical efficiency of German hospitals: Does ownership matter? Health Econ 17(9):1057–1071

    Article  Google Scholar 

  • Hill R, Griffiths W, Lim G (2011) Principles of econometrics, 4th edn. Wiley, Hoboken

    Google Scholar 

  • Horrace W, Parmeter C (2018) A laplace stochastic frontier model. Econ Rev 37(3):260–280

    Article  Google Scholar 

  • Horrace W, Schmidt P (1996) Confidence statements for efficiency estimates from stochastic frontier models. J Prod Anal 7(2–3):257–282

    Article  Google Scholar 

  • Huang YF, Luo S, Wang HJ (2018) Flexible panel stochastic frontier model with serially correlated error. Econ Lett 163:55–58

    Article  Google Scholar 

  • Jondrow J, Lovell C, Materov I, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econ 19(2–3):233–238

    Article  Google Scholar 

  • Kneip A, Simar L (1996) A general framework for frontier estimation with panel data. J Prod Anal 7(2–3):187–212

    Article  Google Scholar 

  • Kumbhakar S (1987) The specification of technical and allocative inefficiency in stochastic production and profit frontiers. J Econ 34(3):335–348

    Article  Google Scholar 

  • Kumbhakar S (1991) Estimation of technical inefficiency in panel data models with firm- and time-specific effects. Econ Lett 36(1):43–48

    Article  Google Scholar 

  • Kumbhakar S, Lovell C (2000) Stochastic frontier analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kumbhakar S, Park B, Simar L, Tsionas E (2007) Nonparametric stochastic frontiers: a local maximum likelihood approach. J Econ 137(1):1–27

    Article  Google Scholar 

  • Kumbhakar S, Wang HJ, Horncastle A (2015) A practitioner’s guide to stochastic frontier analysis using stata. Cambridge University Press, New York

    Book  Google Scholar 

  • Kuosmanen T, Fosgerau M (2009) Neoclassical versus frontier production models? Testing for the skewness of regression residuals. Scand J Econ 111(2):351–367

    Article  Google Scholar 

  • Kuosmanen T, Kortelainen M (2012) Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints. J Prod Anal 38(1):11–28

    Article  Google Scholar 

  • Lai HP, Kumbhakar S (2018) Estimation of dynamic stochastic frontier model using likelihood-based approaches. MPRA Paper 87830, Munich Personal RePEc Archive

    Google Scholar 

  • Lee L, Tyler W (1978) The stochastic frontier production function and average efficiency. J Econ 7(1978):385–389

    Article  Google Scholar 

  • Levinsohn J, Petrin A (2003) Estimating production functions using inputs to control for unobservables. Rev Econ Stud 70(2):317–341

    Article  Google Scholar 

  • Li Q (1996) Estimating a stochastic production frontier when the adjusted error is symmetric. Econ Lett 52(3):221–228

    Article  Google Scholar 

  • Martins-Filho C, Yao F, Torero M (2015) Higher-order conditional quantile estimation based on nonparametric models of regression. Econ Rev 34(6–10):907–958

    Article  Google Scholar 

  • Meesters A (2013) A non-linear stochastic frontier model. Technical report, available at SSRN https://ssrn.com/abstract=2199540 or https://doi.org/10.2139/ssrn.2199540

  • Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18(2):435–444

    Article  Google Scholar 

  • O’Donnell C (2016) Using information about technologies, markets and firm behaviour to decompose a proper productivity index. J Econ 190(2):328–340

    Article  Google Scholar 

  • O’Donnell C, Nguyen K (2013) An econometric approach to estimating support prices and measures of productivity change in public hospitals. J Prod Anal 40(3):323–335

    Article  Google Scholar 

  • Olley G, Pakes A (1996) The dynamics of productivity in the telecommunications equipment industry. Econometrica 64(6):1263–1297

    Article  Google Scholar 

  • Olson J, Schmidt P, Waldman D (1980) A Monte Carlo study of estimators of stochastic frontier production functions. J Econ 13(1):67–82

    Article  Google Scholar 

  • Ondrich J, Ruggiero J (2001) Efficiency measurement in the stochastic frontier model. Eur Jo Oper Res 129(2):434–442

    Article  Google Scholar 

  • Pal M, Sengupta A (1999) A model of FPF with correlated error componenets: an application to Indian agriculture. Sankhya: Indian J Stat Series B 61(2):337–350

    Google Scholar 

  • Park B, Simar L (1994) Efficient semiparametric estimation in a stochastic frontier model. J Am Stat Assoc 89(427):929–936

    Article  Google Scholar 

  • Park B, Sickles R, Simar L (1998) Stochastic panel frontiers: a semiparametric approach. J Econ 84(2):273–301

    Article  Google Scholar 

  • Parmeter CF, Wang HJ, Kumbhakar SC (2017) Nonparametric estimation of the determinants of inefficiency. J Prod Anal 47(3):205–221

    Article  Google Scholar 

  • Pitt M, Lee LF (1981) The measurement and sources of technical inefficiency in the Indonesian weaving industry. J Dev Econ 9(1):43–64

    Article  Google Scholar 

  • Reifschneider D, Stevenson R (1991) Systematic departures from the frontier: a framework for the analysis of firm inefficiency. Int Econ Rev 32(3):715–723

    Article  Google Scholar 

  • Robert C, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer texts in statistics, Springer, New York

    Book  Google Scholar 

  • Salas-Velasco M (2018) Production efficiency measurement and its determinants across OECD countries: the role of business sophistication and innovation. Econ Anal Policy 57:60–73

    Article  Google Scholar 

  • Schmidt P, Lin TF (1984) Simple tests of alternative specifications in stochastic frontier models. J Econ 24:349–361

    Article  Google Scholar 

  • Schmidt P, Lovell C (1979) Estimating technical and allocative inefficiency relative to stochastic production and cost frontiers. J Econ 9(3):343–366

    Article  Google Scholar 

  • Simar L, Zelenyuk V (2011) Stochastic FDH/DEA estimators for frontier analysis. J Prod Anal 36(1):1–20

    Article  Google Scholar 

  • Simar L, van Keilegom I, Zelenyuk V (2017) Nonparametric least squares methods for stochastic frontier models. J Prod Anal 47(3):189–204

    Article  Google Scholar 

  • Smith M (2008) Stochastic frontier models with dependent error components. Econ J 11(1):172–192

    Google Scholar 

  • Stevenson R (1980) Likelihood functions for generalized stochastic frontier estimation. J Econ 13(1):57–66

    Article  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions. Ann Stat 22(4):1701–1728

    Article  Google Scholar 

  • Tsionas E (2006) Inference in dynamic stochastic frontier models. J Appl Econ 21(5):669–676

    Article  Google Scholar 

  • Tsionas E (2007) Efficiency measurement with the Weibull stochastic frontier. Oxford Bull Econ Stat 69(5):693–706

    Article  Google Scholar 

  • van den Broeck J, Koop G, Osiewalski J, Steel M (1994) Stochastic frontier models: a Bayesian perspective. J Econ 61:273–303

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. O’Donnell .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Donnell, C.J. (2018). Stochastic Frontier Analysis. In: Productivity and Efficiency Analysis. Springer, Singapore. https://doi.org/10.1007/978-981-13-2984-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2984-5_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2982-1

  • Online ISBN: 978-981-13-2984-5

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics