• Takeshi TaketaniEmail author
  • Chigusa Oyama
  • Yasuaki Oda
  • Lynne Murphy


During the patient’s fetal phase, hydramnios was present, and bone abnormality was detected. The male infant was born transvaginally at the gestational age of 41 weeks and 2 days. Respiratory impairment became worse soon after birth; therefore, mechanical ventilation was performed. Low titers of serum alkaline phosphatase (ALP) (9 IU/L; reference range, 530–1610 IU/L) and bone ALP (BAP) (0 μg/L; reference range, 3.7–20.4 μg/L) were found, and urinary phosphoethanolamine (PEA) (1195 μmol/L; normal range is non-detectable), one substrate of ALP, was detected. Hypomineralization, thin and short forearm bone, fluttering in the metaphyseal regions, and narrow thorax were revealed by X-ray (Fig. 9.1a, b). These indicated that the patient had developed perinatal lethal hypophosphatasia (HPP). Refractory convulsion developed 5 days after birth, which ceased with the administration of pyridoxine. Tracheobronchomalacia frequently appeared from 6 months after birth. To perform definite diagnosis, we extracted DNA from white blood cells and examined the gene analysis of the liver/bone/kidney alkaline phosphatase (ALPL) gene, the causative gene of HPP. As a result, the patient harbored a homozygous mutation in c.1559delT of the ALPL gene (Fig. 9.2) (Taketani T et al. 2015).


Hypophosphatasia Mesenchymal stem cell Bone-targeting enzyme replacement therapy Congenital skeletal disease 


  1. Abdallah BM, Kassem M (2009) The use of mesenchymal (skeletal) stem cells for treatment of degenerative diseases: current status and future perspectives. J Cell Physiol 218:9–12CrossRefGoogle Scholar
  2. Cahill RA, Wenkert D, Perlman SA, Steele A, Coburn SP, McAlister WH, Mumm S, Whyte MP (2007) Infantile hypophosphatasia: transplantation therapy trial using bone fragments and cultured osteoblasts. J Clin Endocrinol Metab 92:2923–2930CrossRefGoogle Scholar
  3. Iijima O, Miyake K, Watanabe A, Miyake N, Igarashi T, Kanokoda C, Nakamura-Takahashi A, Kinoshita H, Noguchi T, Abe S, Narisawa S, Millán JL, Okada T, Shimada T (2015) Prevention of lethal murine Hypophosphatasia by neonatal ex vivo gene therapy using Lentivirally transduced bone marrow cells. Hum Gene Ther 26:801–812CrossRefGoogle Scholar
  4. Matsumoto T, Miyake K, Yamamoto S, Orimo H, Miyake N, Odagaki Y, Adachi K, Iijima O, Narisawa S, Millán JL, Fukunaga Y, Shimada T (2011) Rescue of severe infantile hypophosphatasia mice by AAV-mediated sustained expression of soluble alkaline phosphatase. Hum Gene Ther 22:1355–1364CrossRefGoogle Scholar
  5. Michigami T, Uchihashi T, Suzuki A, Tachikawa K, Nakajima S, Ozono K (2005) Common mutations F310L and T1559del in the tissue-nonspecific alkaline phosphatase gene are related to distinct phenotypes in Japanese patients with hypophosphatasia. Eur J Pediatr 164:277–282CrossRefGoogle Scholar
  6. Millán JL, Narisawa S, Lemire I, Loisel TP, Boileau G, Leonard P, Gramatikova S, Terkeltaub R, Camacho NP, McKee MD, Crine P, Whyte MP (2008) Enzyme replacement therapy for murine hypophosphatasia. J Bone Miner Res 23:777–787CrossRefGoogle Scholar
  7. Mornet E, Nunes ME (2007 Nov 20 [updated 2016 Feb 4]) Hypophosphatasia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH., Bird TD., Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews® [Internet]. University of Washington, Seattle, Seattle: 1993–2017Google Scholar
  8. Mornet E, Yvard A, Taillandier A, Fauvert D, Simon-Bouy B (2011) A molecular-based estimation of the prevalence of hypophosphatasia in the European population. Ann Hum Genet 75:439–445CrossRefGoogle Scholar
  9. Nishioka T, Tomatsu S, Gutierrez MA, Miyamoto K, Trandafirescu GG, Lopez PL, Grubb JH, Kanai R, Kobayashi H, Yamaguchi S, Gottesman GS, Cahill R, Noguchi A, Sly WS (2006) Enhancement of drug delivery to bone: characterization of human tissue-nonspecific alkaline phosphatase tagged with an acidic oligopeptide. Mol Genet Metab 88:244–255CrossRefGoogle Scholar
  10. Sekido T, Sakura N, Higashi Y, Miya K, Nitta Y, Nomura M, Sawanishi H, Morito K, Masamune Y, Kasugai S, Yokogawa K, Miyamoto K (2001) Novel drug delivery system to bone using acidic oligopeptide: pharmacokinetic characteristics and pharmacological potential. J Drug Target 9:111–121CrossRefGoogle Scholar
  11. Tadokoro M, Kanai R, Taketani T, Uchio Y, Yamaguchi S, Ohgushi H (2009) New bone formation by allogeneic mesenchymal stem cell transplantation in a patient with perinatal hypophosphatasia. J Pediatr 154:924–930CrossRefGoogle Scholar
  12. Taketani T (2015) Neurological symptoms of Hypophosphatasia. Subcell Biochem 76:309–322CrossRefGoogle Scholar
  13. Taketani T, Onigata K, Kobayashi H, Mushimoto Y, Fukuda S, Yamaguchi S (2014) Clinical and genetic aspects of hypophosphatasia in Japanese patients. Arch Dis Child 99:211–215CrossRefGoogle Scholar
  14. Taketani T, Oyama C, Mihara A, Tanabe Y, Abe M, Hirade T, Yamamoto S, Bo R, Kanai R, Tadenuma T, Michibata Y, Yamamoto S, Hattori M, Katsube Y, Ohnishi H, Sasao M, Oda Y, Hattori K, Yuba S, Ohgushi H, Yamaguchi S (2015) Ex vivo expanded allogeneic mesenchymal stem cells with bone marrow transplantation improved osteogenesis in infants with severe Hypophosphatasia. Cell Transplant 24:1931–1943CrossRefGoogle Scholar
  15. Watanabe A, Karasugi T, Sawai H, Naing BT, Ikegawa S, Orimo H, Shimada T (2011) Prevalence of c.1559delT in ALPL, a common mutation resulting in the perinatal (lethal) form of hypophosphatasia in Japanese and effects of the mutation on heterozygous carriers. J Hum Genet 56:166–168CrossRefGoogle Scholar
  16. Whyte MP (2016) Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12:233–246CrossRefGoogle Scholar
  17. Whyte MP (2017) Hypophosphatasia: enzyme replacement therapy brings new opportunities and new challenges. J Bone Miner Res 32:667–675CrossRefGoogle Scholar
  18. Whyte MP, Kurtzberg J, McAlister WH, Mumm S, Podgornik MN, Coburn SP, Ryan LM, Miller CR, Gottesman GS, Smith AK, Douville J, Waters-Pick B, Armstrong RD, Martin PL (2003) Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res 18:624–636CrossRefGoogle Scholar
  19. Whyte MP, Greenberg CR, Salman NJ, Bober MB, McAlister WH, Van Sickle B, Wenkert D, Edgar TS, Bauer ML, Hamdan M, Simmons JH, Bishop N, Lutz RE, McGinn M, Craig S, Moore JN, Taylor JW, Cleveland RH, Cranley WR, Lim R, Thacher TD, Mayhew JE, Downs M, Millan JL, Skrinar A, Crine P, Landy H (2012) Enzyme replacement therapy in life-threatening hypophosphatasia. N Engl J Med 366:904–913CrossRefGoogle Scholar
  20. Whyte MP, Madson KL, Phillips D, Reeves A, McAlister WH, Yakimoski A, Mack K, Hamilton K, Kagan K, Melian A, Thompson D, Moseley S, Odrljin T, Greenberg CR (2016) Asfotase alfa therapy for children with hypophosphatasia. JCI Insight 1:e85971 1–10CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Takeshi Taketani
    • 1
    Email author
  • Chigusa Oyama
    • 1
  • Yasuaki Oda
    • 1
  • Lynne Murphy
    • 2
  1. 1.Faculty of Medicine, Department of PediatricsShimane UniversityIzumoJapan
  2. 2.Faculty of Medicine, Department of Medical English EducationShimane UniversityIzumoJapan

Personalised recommendations