Skip to main content

Thin-Film Oxide Transistor by Liquid Process (3): TFTs with ZrInZnO Channel

High-Performance Solution-Processed ZrInZnO TFT

  • Chapter
  • First Online:
Nanoliquid Processes for Electronic Devices
  • 275 Accesses

Abstract

In this chapter, we report on thin-film transistors (TFTs) with high performance and high stability using a solution-processed ZrInZnO (ZIZO) film as an active layer. In Sect. 18.1, the effects of adding Zr to In–Zn–O, particularly the electrical characteristics of their thin films and TFTs, were systematically investigated. The Zr addition effectively controlled oxygen vacancies because of the low standard electrode potential of Zr, which was confirmed by modifications in the optical bandgap energy, carrier concentration, and oxygen-vacancy density of the ZIZO thin films. Consequently, the off current decreased and the threshold voltage increased with increasing Zr content. The optimal ZIZO TFT was obtained at the Zr/In/Zn mole ratio of 0.05:2:1, and its “on/off” ratio, channel mobility, and subthreshold swing voltage were ~109, 6.23 cm2 V1 s1, and 0.19 V/dec, respectively. Not only the performance but also the bias–stress stability was improved as a result of the reduced interface charge trapping nature of ZIZO TFTs.

In Sect. 18.2, a polysilazane-based SiO2 gate insulator, which is also a solution processable material, is investigated to get the maximum out of a ZrInZnO semiconductor in a TFT. A smooth interface without defects was confirmed in the ZrInZnO/SiO2 system. The gate leakage current was reduced to 1 × 108 A/cm2 at 1 MV/cm. The resulting TFTs exhibited a field-effect mobility of 19–29 cm2 V−1 s−1 with a low leakage current of less than 9 × 1011 A.

The third example of all-solution-processed TFT, in which all the layers were fabricated using simple solution process, is introduced in Sect. 18.3. In particular, our original combination of amorphous lanthanum zirconium oxide (LaZrO) and zirconium–indium–zinc oxide (ZrInZnO) films was used as a gate insulator and channel layer, respectively. In addition to that, a ruthenium oxide film was used both for the gate and source/drain electrodes. The ultraviolet–ozone (UV/O3) treatment was also adopted to a channel layer to facilitate precursor decomposition and condensation processes. As a result, the obtained on/off ratio, subthreshold swing voltage, and channel mobility were ∼6 × 105, 250 mV/decade, and 5.80 cm2 V−1 s−1, respectively.

As an evolution of all-solution-processed TFT, we tried to fabricate an all-solution-processed active-matrix transistor array for a EPD (electrophoretic display). That is described in Sect. 18.4. In the case of an active-matrix TFT backplane, not only TFT layers but also the other additional layers are required, so fabrication is more complicated and difficult compared with a sole TFT. The developed TFTs exhibited a good operation, and the active-matrix-driven electrophoretic displays (AM-EPDs) with the resolution of 101.6 ppi were successfully fabricated using an all-solution process. Bistable black/white images were confirmed in these AM-EPDs for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Takahashi, H. Kishida, A. Miyanaga, S. Yamazaki, Theoretical analysis of IGZO transparent amorphous oxide semiconductor, in Proceedings of the 15th International Display Workshop, Dec. 3, 2008, pp. 1637–1640

    Google Scholar 

  2. J.K. Jeong, H.W. Yang, J.H. Jeong, Y.-G. Mo, H.D. Kim, Origin of threshold voltage instability in indium–gallium–zinc oxide thin film transistors. Appl. Phys. Lett. 93(12), 123508-1–123508-3 (2008)

    Article  Google Scholar 

  3. E. Chong, K.C. Jo, S.Y. Lee, High stability of amorphous hafnium–indium–zinc–oxide thin film transistor. Appl. Phys. Lett 96(15), 152102-1–152102-3 (2010)

    Article  Google Scholar 

  4. A. Suresh, J.F. Muth, Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors. Appl. Phys. Lett. 92(3), 033502-1–033502-3 (2008)

    Article  Google Scholar 

  5. R.B.M. Cross, M.M. De Souza, Investigating the stability of zinc oxide thin film transistors. Appl. Phys. Lett. 89(26), 263513-1–263513-3 (2006)

    Article  Google Scholar 

  6. C.-G. Lee, A. Dodabalapur, Solution-processed zinc–tin oxide thin film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett. 96(24), 243501-1–243501-3 (2010)

    Google Scholar 

  7. P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, S. Kipp, Stability of transparent zinc tin oxide transistors under bias stress. Appl. Phys. Lett. 90(6), 063502-1–063502-3 (2007)

    Article  Google Scholar 

  8. K. Yong-Hoon, H. Jeong-In, P. Sung Kyu, Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc–tin–oxide thin-film transistors. IEEE Electron Device Lett. 33(1), 50–52 (2012)

    Article  Google Scholar 

  9. Y. Vygranenko, K. Wang, A. Nathan, Stable indium oxide thin-film transistors with fast threshold voltage recovery. Appl. Phys. Lett. 91(26), 263508-1–263508-3 (2007)

    Article  Google Scholar 

  10. A.J. Flewitt, J.D. Dutson, P. Beecher, D. Paul, S.J. Wakeham, M.E. Vickers, C. Ducati, S.P. Speakman, W.I. Milne, M.J. Thwaites, Stability of thin film transistors incorporating a zinc oxide or indium zinc oxide channel deposited by a high rate sputtering process. Semicond. Sci. Technol. 24(8), 085002-1–085002-7 (2009)

    Article  Google Scholar 

  11. J.W. Hennek, M.-G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Exploratory combustion synthesis: Amorphous indium yttrium oxide for thin-film transistors. J. Am. Chem. Soc. 134(23), 9593–9596 (2012)

    Article  CAS  Google Scholar 

  12. W.H. Jeong, G.H. Kim, H.S. Shin, B.D. Ahn, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.Y. Lee, Investigating addition effect of hafnium in InZnO thin film transistors using a solution process. Appl. Phys. Lett. 96(9), 093503-1–093503-3 (2010)

    Article  Google Scholar 

  13. J.-S. Park, K. Kim, Y.-G. Park, Y.-G. Mo, H.D. Kim, J.K. Jeong, Novel ZrInZnO thin-film transistor with excellent stability. Adv. Mater. 21(3), 329–333 (2009)

    Article  CAS  Google Scholar 

  14. G.H. Kim, W.H. Jeong, B.D. Ahn, H.S. Shin, H.J. Kim, H.J. Kim, M.-K. Ryu, K.-B. Park, J.-B. Seon, S.-Y. Lee, Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96(16), 163506-1–163506-3 (2010)

    Google Scholar 

  15. D.N. Kim, D.L. Kim, G.H. Kim, S.J. Kim, Y.S. Rim, W.H. Jeong, H.J. Kim, The effect of La in InZnO systems for solution-processed amorphous oxide thin-film transistors. Appl. Phys. Lett. 97(19), 192105-1–192105-3 (2010)

    Google Scholar 

  16. Y. Choi, G.H. Kim, W.H. Jeong, J.H. Bae, H.J. Kim, J.-M. Hong, J.-W. Yu, Carrier-suppressing effect of scandium in InZnO systems for solution-processed thin film transistors. Appl. Phys. Lett. 97(16), 162102-1–162102-3 (2010)

    Article  Google Scholar 

  17. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432(7016), 488–492 (2004)

    Article  CAS  Google Scholar 

  18. J.P. Chang, Y.S. Lin, S. Berger, A. Kepten, R. Bloom, S. Levy, Ultrathin zirconium oxide films as alternative gate dielectrics. J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. 19(16), 2137–2143 (2001)

    Article  CAS  Google Scholar 

  19. N. Naghavi, A. Rougier, C. Marcel, C. Guéry, J.B. Leriche, J.M. Tarascon, Characterization of indium zinc oxide thin films prepared by pulsed laser deposition using a Zn3In2O6 target. Thin Solid Films 360(1/2), 233–240 (2000)

    Article  CAS  Google Scholar 

  20. V. Srikant, D.R. Clarke, On the optical band gap of zinc oxide. J. Appl. Phys. 83(10), 5447–5451 (1998)

    Article  CAS  Google Scholar 

  21. P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 60(1), 320–326 (2013)

    Article  CAS  Google Scholar 

  22. Y. Kwon, Y. Li, Y.W. Heo, M. Jones, P.H. Holloway, D.P. Norton, Z.V. Park, S. Li, Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel. Appl. Phys. Lett. 84(14), 2685–2687 (2004)

    Article  CAS  Google Scholar 

  23. E.H. Nicollian, J.R. Brews, MOS Physics and Technology (Wiley, New York, 1981)

    Google Scholar 

  24. S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  25. G.H. Kim, H.S. Kim, H.S. Shin, B.D. Ahn, K.H. Kim, H.J. Kim, Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517(15), 4007–4010 (2009)

    Article  CAS  Google Scholar 

  26. C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium. Surf. Sci. 218(2/3), 331–345 (1989)

    Article  CAS  Google Scholar 

  27. Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, J. Moon, Bias-stress-stable solution-processed oxide thin film transistors. ACS Appl. Mater. Interfaces 2(3), 611–615 (2010)

    Article  CAS  Google Scholar 

  28. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, E. Fortunato, Role of order and disorder on the electronic performances of oxide semiconductor thin film transistors. J. Appl. Phys. 101(4), 044505-1–044505-7 (2007)

    Article  Google Scholar 

  29. W. Lim, E.A. Douglas, D.P. Norton, S.J. Pearton, F. Ren, Y.-W. Heo, S.Y. Son, J.H. Yuh, Low-voltage indium gallium zinc oxide thin film transistors on paper substrates. Appl. Phys. Lett. 96(5), 053510-1–053510-3 (2010)

    Article  Google Scholar 

  30. M.S. Grover, P.A. Hersh, H.Q. Chiang, E.S. Kettenring, J.F. Wager, D.A. Keszler, Thin-film transistors with transparent amorphous zinc indium tin oxide channel layer. J. Phys. D. Appl. Phys. 40(5), 1335–1335 (2007)

    Article  CAS  Google Scholar 

  31. F.R. Libsch, J. Kanicki, Bias-stress-induced stretched-exponential time dependence of charge injection and trapping in amorphous thin-film transistors. Appl. Phys. Lett. 62(11), 1286–1288 (1993)

    Article  Google Scholar 

  32. M.J. Powell, The physics of amorphous-silicon thin-film transistors. IEEE Trans. Electron Devices 36(12), 2753–2763 (1989)

    Article  CAS  Google Scholar 

  33. K.M. Kim, C.W. Kim, J.-S. Heo, H. Na, J.E. Lee, C.B. Park, J.-U. Bae, C.-D. Kim, M. Jun, Y.K. Hwang, S.T. Meyers, A. Grenville, D.A. Keszler, Competitive device performance of low-temperature and all-solution-processed metal–oxide thin-film transistors. Appl. Phys. Lett. 99(24), 242109-1–242109-3 (2011)

    Google Scholar 

  34. M. Mativenga, M.H. Choi, J.W. Choi, J. Jang, Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett. 32(2), 170–172 (2011)

    Article  CAS  Google Scholar 

  35. M. Mativenga, J.K. Um, D.H. Kang, R. Mruthyunjaya, J.H. Chang, G.N. Heiler, T.J. Tredwell, J. Jang, Edge effects in bottom-gate inverted staggered thin-film transistors. IEEE Trans. Electron Devices 59(2), 2501–2506 (2012)

    Article  CAS  Google Scholar 

  36. E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin film transistors: A review of recent advances. Adv. Mater. 24(22), 2945–2986 (2012)

    Article  CAS  Google Scholar 

  37. I. Yudasaka, H. Tanaka, M. Miyasaka, S. Inoue, T. Shimoda, Poly-Si thin-film transistors using polysilazane-based spin-on glass for all dielectric layers. SID Int. Symp. Dig. Tech. Papers 35(1), 964–967 (2004)

    Article  CAS  Google Scholar 

  38. J.L. Yeh, S.C. Lee, Amorphous-silicon thin-film transistor with liquid phase deposition of silicon dioxide gate insulator. IEEE Electron Device Lett. 20(3), 138–139 (1999)

    Article  CAS  Google Scholar 

  39. H. Kozuka, M. Fujita, S. Tamoto, Polysilazane as the source of silica: The formation of dense silica coatings at room temperature and the new route to organic–inorganic hybrids. J. Sol-Gel Sci. Technol. 48(1/2), 148–155 (2008)

    Article  CAS  Google Scholar 

  40. K. Kamiya, T. Tange, T. Hashimoto, H. Nasu, Y. Shimuzu, Formation process of silica glass thin films from perhydropolysilazane. Res. Rep. Faculty Eng. Mie Univ. 26(12), 23–31 (2001)

    CAS  Google Scholar 

  41. H.T.C. Tu, S. Inoue, P.T. Tue, T. Miyasako, T. Shimoda, Investigation of Polysilazane-Based SiO2 Gate Insulator for Oxide Semiconductor Thin-Film Transistors. IEEE Trans. Electron Devices 60(3), 1149–1153 (2013)

    Article  CAS  Google Scholar 

  42. H. Xie, J. Wei, X. Zhang, Characterisation of sol-gel thin films by spectroscopic ellipsometry. J. Phys. Conf. Ser. 28(1), 95–99 (2006)

    Article  CAS  Google Scholar 

  43. P.T. Tue, T. Miyasako, J. Li, H.T.C. Tu, S. Inoue, E. Tokumitsu, T. Shimoda, High-performance solution-processed ZrInZnO thin-film transistors. IEEE Trans. Electron Devices 60(1), 320–326 (2013)

    Article  CAS  Google Scholar 

  44. N. Primeau, C. Vautey, M. Langlet, The effect of thermal annealing on aerosol-gel deposited SiO2 films: A FTIR deconvolution study. Thin Solid Films 310(1/2), 47–56 (1997)

    Article  CAS  Google Scholar 

  45. G. Lucovsky, J. Yang, S.S. Chao, J.E. Tyler, W. Czubatyj, Nitrogen-bonding environments in glow-discharge-deposited a-Si:H films. Phys. Rev. B Condens. Matter 28(6), 3234–3240 (1983)

    Article  CAS  Google Scholar 

  46. C.H. Liu, T.K. Lin, S.J. Chang, GaAs MOS capacitors with photo-CVD SiO2 insulator layers. Solid State Electron. 49(7), 1077–1080 (2005)

    Article  CAS  Google Scholar 

  47. K.Y. Cheong, W. Bahng, N.K. Kim, Analysis of charge conduction mechanisms in nitrided SiO2 Film on 4H SiC. Phys. Lett. A 372(4), 529–532 (2008)

    Article  CAS  Google Scholar 

  48. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, USA, 1981), pp. 402–404

    Google Scholar 

  49. Y.K. Moon, S. Lee, W.S. Kim, B.W. Kang, C.O. Jeong, D.H. Lee, J.W. Park, Improvement in the bias stability of amorphous indium gallium zinc oxide thin-film transistors using an O2 plasma-treated insulator. Appl. Phys. Lett. 95(1), 013507-1–013507-3 (2009)

    Article  Google Scholar 

  50. P. Barquinha, A.M. Vila, G. Goncalves, L. Pereira, R. Martins, J.R. Morante, E. Fortunato, Gallium–indium–zinc-oxide-based thinfilm transistors: Influence of the source/drain material. IEEE Trans. Electron Devices 55(4), 954–960 (2008)

    Article  CAS  Google Scholar 

  51. P.T. Tue, J. Li, T. Miyasako, S. Inoue, T. Shimoda, Low-temperature all-solution-derived amorphous oxide thin-film transistors. IEEE Electron Device Lett. 34, 1536–1538 (2013)

    Article  CAS  Google Scholar 

  52. T. Miyasako, B.N.Q. Trinh, M. Onoue, et al., Totally solution-processed ferroelectric-gate thin-film transistor. Appl. Phys. Lett. 97, 173509-1–173509-3 (2010)

    Article  Google Scholar 

  53. C. Guerrero, J. Roldán, C. Ferrater, et al., Growth and characterization of epitaxial ferroelectric PbZrx Ti1−xO3 thin film capacitors with SrRuO3 electrodes for non-volatile memory applications. Solid State Electron. 45, 1433–1440 (2001)

    Article  CAS  Google Scholar 

  54. Y. Zhao, K. Kita, K. Kyuno, et al., Dielectric and electrical properties of amorphous La1−xTaxOy films as higher-k gate insulators. J. Appl. Phys 105, 034103-1–034103-5 (2009)

    Google Scholar 

  55. K.K. Banger, Y. Yamashita, K. Mori, et al., Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. Nature Mater. 10, 45–50 (2011)

    Article  CAS  Google Scholar 

  56. K. Umeda, T. Miyasako, A. Sugiyama, et al., Impact of UV/O3 treatment on solution-processed amorphous InGaZnO4 thin-film transistors. J. Appl. Phys 113(18), 184509-1–184509-6 (2013)

    Article  Google Scholar 

  57. S. Jeong, Y.G. Ha, J. Moon, et al., Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors. Adv. Mater. 22, 1346–1350 (2010)

    Article  CAS  Google Scholar 

  58. S. Inoue, P.T. Tue, T. Hori, H. Koyama, T. Shimoda, Electrophoretic displays driven by all-oxide thin-film transistor backplanes fabricated using a solution process. Phys. Status Solidi A 212(10), 2133–2140 (2015). https://doi.org/10.1002/pssa.201532082

    Article  CAS  Google Scholar 

  59. Y. Murakami, P.T. Tue, H. Tsukada, J. Li, T. Shimoda, IDW Tech. Dig. 1573 (2013)

    Google Scholar 

  60. D.J. Yun, H.M. Ra, S.B. Jo, W. Maeng, S.H. Lee, S. Park, J.W. Jang, K. Cho, S.W. Rhee, ACS Appl. Phys. Mater. Interf. 4, 4588 (2012)

    Article  CAS  Google Scholar 

  61. T.E. Hong, K.Y. Mun, S.K. Choi, J.Y. Park, S.H. Kim, T. Cheon, W.K. Kim, B.Y. Lim, S. Kim, Thin Solid Films 520, 6100 (2012)

    Article  CAS  Google Scholar 

  62. S. Bhaskar, P.S. Dobal, S.B. Majumder, R.S. Katiyay, J. Appl. Phys. 89, 2987 (2001)

    Article  CAS  Google Scholar 

  63. R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Chem. Soc. Rev. 40, 5406 (2011)

    Article  CAS  Google Scholar 

  64. J.F. Tressler, K. Watanabe, M. Tanaka, J. Am. Ceram. Soc. 79, 525 (1996)

    Article  CAS  Google Scholar 

  65. P.T. Tue, J. Li, T. Miyasako, S. Inoue, T. Shimoda, IEEE Election Device Lett. 34, 1536 (2013)

    Article  CAS  Google Scholar 

  66. T. Kaneda, D. Hirose, T. Miyasako, P.T. Tue, Y. Murakami, S. Kohara, J. Li, T. Mitani, E. Tokumitsu, T. Shimoda, J. Mater. Chem. C 2, 40 (2014)

    Article  CAS  Google Scholar 

  67. H.T.C. Tu, S. Inoue, P.T. Tue, T. Miyasako, T. Shimoda, IEEE Trans. Electron Devices 60, 1149 (2013)

    Article  CAS  Google Scholar 

  68. I. Ota, U.S. Patent 3 668 109, June 6, 1972

    Google Scholar 

  69. S. Inoue, S. Kanbe, T. Ozawa, Y. Kobashi, H. Kawai, T. Kitagawa, T. Shimoda, IEDM Tech. Dig. 197 (2000)

    Google Scholar 

  70. S. Inoue, H. Kawai, S. Kanbe, T. Saeki, T. Shimoda, IEEE Trans. Electron Devices 49, 1532 (2002)

    Article  CAS  Google Scholar 

  71. B. Comiskey, J.D. Albert, J. Jacobson, SID Tech. Dig. 75 (1997)

    Google Scholar 

  72. E. Nakamura, H. Kawai, N. Kanae, H. Yamamoto, SID Tech. Dig. 1014 (1998)

    Google Scholar 

  73. P. Drzaic, B. Comiskey, J.D. Albert, L. Zhang, A. Loxley, R. Feeney, SID Tech. Dig. 1131 (1998)

    Google Scholar 

  74. H. Kawai, N. Kanae, SID Tech. Dig. 1102 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shimoda, T. (2019). Thin-Film Oxide Transistor by Liquid Process (3): TFTs with ZrInZnO Channel. In: Nanoliquid Processes for Electronic Devices. Springer, Singapore. https://doi.org/10.1007/978-981-13-2953-1_18

Download citation

Publish with us

Policies and ethics